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S.1. Introduction

We discuss some relevant mathematical background first in
Section S.2, those are directly used in the paper or proofs.
We include some examples and properties related to OSBP
and PPFs of OSBP in Section S.3. There are two lemmas
and four theorems in the paper. We prove them here in
Sections S.4, S.5, S.6 related to OSBP, PPF of OSBP and
SUMO respectively. We additionally provide one theorem
(Theorem A) and a lemma (Lemma 1) which are strongly
related to OSBP but could not be included in the paper
due to space constraint. Then we provide construction of
dependency over mini-batches using OSBP on PYP, SBP,
HDP in Section S.7. Finally we give inference details for
DPMM for text datasets in Section S.8.

S.2. Mathematical background

This is not a comprehensive review, we cover only thos def-
initions and properties that will be referred later in this ma-
terial.

S.2.1. Gamma distribution and Gamma process

Definition 1. (Gamma Distribution). A non-negative real-
valued random variable X is said to have a Gamma dis-
tribution with shape parameter o and scale parameter (3,
denoted by X ~ Gamma(co; B3), if its probability density
function is given by

:Caflefx/ﬁ

f(l’;aﬁ):W

Proposition 1. Let X1,Xo,... be a countable collection
of independent Gamma distributed variables as X ~
Gamma(ay; 8). Then

)

Z Xp ~ Gamma(z ak, B) (2)
k=1 k=1

Definition 2. (Gamma process) A random measure G on 2
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is called a Gamma process with base measure H and scale
parameter «, denoted by G ~ T'P(aH), if it satisfies

e for each measurable subset A € B, G(A) has a
Gamma distribution as G(A) ~ Gamma(aH(A)),
and

e G is completely random

Prgposition 2. Ing ~ T'P(ojH;) forj = 1,...,k, then
251G ~ P35, ajHj).

S.2.2. Dirichlet distribution and Dirichlet process

Let S; denote the probability simplex in the d-dimensional
real vector space R, as

d
xq) ERga; >0,V Yz =1} (3)

i=1

Sa={(z1,...

Definition 3. (Dirichlet distribution) An Sg4-valued ran-
dom variable X is said to have a Dirichlet distribution, de-
noted by X ~ Dir(ay,...,aq) with ay, ..., aq > 0, if it
has a probability density function given by

d
F(Zi:1 ;) i1

flay,. .. zg50q,. .. aq) Hlef(ai) ; )
Proposition 3. Letr Xi,Xo,...,Xx be k in-
dependent Gamma distributed variables as
X; ~ Gamma(ay;B). Then for Y; = ;:1 <
(Y1,...,Yk) ~ Dirichlet(a, ..., ak).

Proof. This can be seen using the procedure of transforma-

tion of random variables. L]

Proposition 4. If (1, The1,Tk) ~

Dirichlet(ay,...,ap_1,ar), then (yi,...,Yk—1) ~

Dirichlet(a, ..., 05—1), where y; = E’“’{jl - for
1=1 ¥l

j=1,... k-1
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Proof. Let 71,...,Z; be k independent variables such

that z; ~ Gamma(a;, ) for j = 1,...,k. Then
~ ) . — 7Zj
(x1,...,2,) ~ Dirichlet(o,...,ay), for x; ST
using Proposition 3.
We can write,
kzj
J— Zj — PO _ Zj
=TI S - U
Thus, by Proposition 3, (Y1, - Yk—-1) ~
Dirichlet(ay, ..., op—1). O

Definition 4. (Dirichlet Process). Let, H is a probabil-
ity measure over a measurable space (2, B), and v is
a positive real number. A random measure G on § is
called a Dirichlet process with base measure H, denoted
by G ~ DP(~,H) if for any finite measurable partition
(B1,Ba,...,Bk) of

(G(B1), ..., G(Bg)) ~ Dirichlet(yH(B1), ..., 7H(Bg)) (6)

Stick-breaking representation of DP. (Sethuraman,
1994) proposed a stick-breaking construction of DP such
that if G ~ DP(+y, H), then

oo
G=Y 0,05, Bj ~H 7
j=1
dp, denotes an atomic distribution where the entire proba-
bility mass is concentrated at 3;. {6,} are constructed as
follows.
j—1

61 =v1,0; =v; H(l—vl), v; ~ Beta(1,7) (8)
=1
The above construction can be understood as breaking a
unit length stick using stick fractions v;. (Sethuraman,
1994) showed that 372 | ; = 1 when {0, } are constructed
as above. Often 6 is said to be distributed as GEM (7).

S.2.3. Generalized Dirichlet distribution

Definition 5. (Generalized Dirichlet distribution) An Sy.-
valued random variable X is said to have a generalized
Dirichlet distribution, denoted by

X ~GDD(ay,b1,. .. ,a5_1,b_1) )

with a;,b; > 0, Vj if it has a probability density function
given by

f(l'l»».
-1
(Hf;ll B(aj,bj)) 211

_ bj—1—a;—b;
iy (;«J 1(25:3,@) ) (10)

'(a;)T(b;)
T(a;+b;)

S xgsar, by, ap—1,bp—1) =

where xy =1 — 3% zj. B(aj,b;) =

=1

Example. Let k =
($1,$2,$3,$4) iS

4, then the density function of

3 —1 —1 —1, _bz—1
(1 Blajby)  afag> o aly
(22 + w5 + m4)" 722702 (23 + ay)P2 70 (11)

Proposition 5. By setting bj_1 = a; +b;, 2 < j <k —
1 (b is arbitrary), X ~ GDD(ay,b1,...,a5—1,bg—1) is
equivalently X ~ Dirichlet(ay,ag, ..., ak—1,bk_1).

Proof. This follows directly from Eq. (10) and Eq. (4). [

S.2.4. Stick-breaking process

We have defined SBP in the paper, however we re-iterate
the discussion to show one useful result in Lemma A re-
garding SBP.

Any almost sure (a.s.) discrete probability measure G is a
stick-breaking process (SBP) (Ishwaran & James, 2001) if
it can be represented as

G = Z;il Qjégj,ﬁl =1, 9j = 0; Hg;ll(l — ’Ul)
aj,bj >0, v~ Beta(aj,bj), Bj ~ H (12)

H is a diffuse measure over a measurable space (2, B) and
{a;,b;} are set of parameters.

The following lemma gives a condition over {a;,b;} so
that 3°°°, 0; = 1as.

Lemma A. (Ishwaran & James, 2001). For the random
weights in an SBP, Z;‘;l 0; = 1as. iff 250:1 E[log(1 —
v;)] = —oo. Alternatively, it is sufficient to check that
> ey log(1 + %) = +o0.

Proof. See appendix by Ishwaran & James (2001). O

Important special cases. SBP subsumes many well
known BNP priors. When a; = 1 and b; = -y for all j, SBP
becomes D P(~, H) following the constructive definition of
Dirichlet process by Sethuraman (1994). Another popu-
lar BNP prior, the two parameter Poisson-Dirichlet process
or Pitman-Yor process (PYP) (Pitman & Yor, 1997) can
also be obtained as a special case when a; = 1 — X and
bj = v+ jA for all j. There are many other existing pri-
ors which are special cases of SBP, see (Ishwaran & James,
2001) for a detailed discussion.

S.3. Appearance in order and OSBP

In this section, we first give an example of appearance in
order phenomenon, and then we recall the definition of
OSBP, followed by one essential information about OSBP.
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S.3.1. Example of appearance in order

Here, we give an example of the appearance in order phe-
nomenon defined in Section 2.1.

Let, t = 9 and (Y;) is (a,a,b,a,c,a,b,a,a). Notice that,
kg = 3 with {a, b, c} as {Y1, Y2, Y3}. Now we have

B; ={1,2,4,6,8,9},B2 = {3,7}, and B3 = {5}
Then we say that it is appearing in order as
[9] —B1 ={3,7,5} = 3 € By
[9] — (B1 UB2) = {5} =5 € B3
whereas if Y = {a, ¢, b} then
B; ={1,2,4,6,8,9},B2 = {5} and B3 = {3, 7}
is not appearing in order as

[9] — By = {3,7,5} but 3 ¢ B,

S.3.2. Definition of OSBP

As we will be referring to OSBP in later parts of this
material, for the sake of easy reading we present them here
again.

Let ' be a diffuse probability measure over random mea-
sures, and p, v denote the set of scalar hyper-parameters
{1;} and {v;} respectively such that 0 < p; < 1,
v; > 0, ¥j. (G1,G2,...) is an appearing in order
sequence of random measures. (Qj,...,Qg,_,) is the
set of k;_1 unique values among Gi.;_1. We define,
G1,Ga, ...~ OSBP(u,v,T") if G ~ I and for any ¢ > 2,
the following holds:
Gt [Gre—1, (), T ~ Y55 i, + o, , T
pr=wv1, ¥i>1, pj=v; [[(1-w)

vjlpg, vy ~ Beta (uvg, (1 — pj)vy)

=130 p; (13)

S.3.3. Diffuse base measure of OSBP ensures
appearance in order

The need of the base measure I' to be a diffuse measure is
explained with the following Theorem.

Theorem A. The samples from OSBP, (G1,Ga,...) ~
OSBP(u,v,T') will be appearing in order almost surely
iff the base measure of OSBP, T in Eq. (13) is a diffuse
probability measure.

Proof. When T is diffuse, for any two samples Q; and Q;
sampled from I" will be almost sure distinct iff j # [. By
definition of OSBP, if forany t, G, ~ I'then k;, = k;—1+1
and Q, = G;. As I' is diffuse measure, Q, is a.s. distinct

from all Q;, j < ky. Thus G; # G; for all | < t. Hence,
[t\ Uyt B, = t and By, = [t].

We show the sufficient condition by contradiction. Sup-
pose, I' is atomic. Lett = 4, k4 = 2, and Qy # Q. There
are two partitions B; and B;. Now when Gj is sampled
suppose it is sampled from I, then Q3 = G5. Then by def-
inition of appearance in order [5]\(B; U Bs) should be in
B3 which is [5]. As I"is atomic let Q3 = Q;. Then G5 be-
comes equal to G; and so 5 € By and [5]\(B1 U Ba) = 0.
Contradiction. So, whenever a Q; is sampled from I', k;
must increase. k; will increase iff Q; is different from all
Q;, I < j. Hence T has to be a diffuse probability mea-
sure. L]

This is a slightly strict condition on the base measure than
that for DP and PYP which also points out one key differ-
ence with the common BNP priors such as DP, PYP.

S.3.4. Comparison with DP and PYP on PPF.

DP and Pitman-Yor process (PYP) (Pitman & Yor, 1997)
are the only other two existing SBP class of priors possess-
ing PPFs. It is worth to note the difference of OSBP from
DP, PYP in terms of PPFs due to modeling appearance in
order. Recall that, PPF (7;, j € [ki—1] and oy, _, ) are de-
fined by Pitman (1996) as

m; =p(2e = jlz1:4-1,9), J € [ke—1],
Ok = P(2t = ki1 + 1|21:4-1, 0) (14)

where O denotes the set of hyper-parameters. The PPFs
corresponding to D P(~, H), also popularly referred as Chi-
nese restaurant process (CRP) are

Tj = 510 J € ki),

5)

_ 7
Oki—1 = 55¢—1

where g; = |B,|, and B; = {i|z; = j}. Thus, Z?"Z’f gj =

t — 1 and Z?:l 7j + ap,_, = 1. Similarly, PPFs of

PYP(a,b,H) (0 <a<1landb > —a) are

Tj = bgi;,alv JjE€ [ktfl]y
btaky_
ok, = Lok (16)
Note that, Z?‘:‘f gi —a = t —1— ak;_y and hence

Sy + ak,_, = 1. Byusinga = 0 and b =, PYP
becomes equivalent to DP.

Notice from Theorem 3 that, 7; for OSBP can be writ-
ten as a; [T/} (1 — a;), where a; = % From
Lemma 2, a; is the posterior expectation of v; condi-
tioned on Gy.;—;. Thus in OSBP, the probability of joining
partition B; directly depends on not joining the partitions
{B1,Ba,...,B;_1}. Whereas, in case of DP and PYP the
probability of joining partition B; depends only on the size
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of B; and the probabilities of joining partitions only loosely
depend because of summing up to one.

Moreover, Corollary 1 of (Lee et al., 2013) shows that the
only PPF which lead to an exchangeable sequence are those
for which 7; is a function of partition B; only. This is true
for DP and PYP but not for OSBP. In Case of OSBP, 7; is
a function of all the existing partitions (B;).

An important implication of this interpretation is that even
though the partitions (and hence atoms) can be assumed
to appear in order for DP and PYP, the effect of ordering
of the partitions is lost due to the symmetric nature of this
function which leads to an exchangeable partition probabil-
ity function (EPPF by (Pitman, 1996)), or equivalently an
exchangeable sequence illustrating another view why DP
and PYP are not suitable to model appearance in order.

S.3.5. Example related to Theorem 2

Example. Let i > 1/2, Vj, and € = 0.01. For k = 14,
ag < 0.01 with probability more than 0.99.

S.4. Proofs related to OSBP

S.4.1. Proof of Theorem 1

Theorem 1. If Py = I, b, = 35" p;do, + o, T for

t > land P* = 370 pjdg, such that 3272 pj = 1,
where (p;), (Q;), o, and T' as defined in Eq. (13) with
parameter pu, v, then lim;_, ., Py = P* a.s.

Proof. By definition, k; is the cardinality of the set
(Q1,Q2,..-,Qk,). Soforanyt > 0, ky = k;—; if no
new atom is sampled, and k; = k;—; + 1 if a new atom
is sampled from the base measure I'. From Eq. (13), the
probability of k; = k;—; + 1 is o, , and probability of
ke = ke—1is 355" p; which by definition is 1 — oy, _,.
Hence, we get

kt—l S ]Ct a.s. (17)

As, ki1 > kyas.,and o, = 1 — Zf;l p; by definition,
with p; > 0 a.s. for all j, we get

O, , > O, G.S. (18)

k¢ > k:_1 and not bounded above. For any K > 0, there is
a t’ such that ky > K, otherwise K is the upperbound of
k. So we can say

lim k;, =00 a.s. (19)
t—o0

On the other hand, o, < ay, , and bounded below by

zero. For any € > 0 there is a t’ such that ay,, < e, other-
wise e is the lower bound of oy, . Hence,

lim a, =0 a.s. (20)
t—o0

o . k
Thus, we can write lim;_,oo P; = lim;_,oo Zj":l pjéQj +

. . k .
limy o0 g, I' = limy, 00 Zj"zl pj0q, +lims 0 g, I' =
Z;’;l pjdq, = P*. That proves the Theorem.

O

Corollary 1. For t € N and oy, as defined in OSBP,
limg, oo g, = 0 a.s.

Proof. This corollary is immediate from the above result.
However we give one alternative proof here. Note that (1+
ol o) > Lhence 3077 log(1 4 7£44-) = +o0. By
Lemma A it follows that 3°7° | p; = 1 a.s. Therefore,

lim ok, =0 a.s. 20

ki—ro0
O

S.4.2. Proof of Lemma 1
Lemma 1. Foranyt € N, Rt = (01,025 - s Ply_1 Qhyp_y)

as defined in Eq. (13) is distributed as generalized Dirichlet
distribution (Connor & Mosimann, 1969). Furthermore, if
(1 — pj1)vjor = vj for j, 2 < j < ky_q, then Ry ~
Dirichlet(ulul, H2V2y ooy Uiy Viy_ 1y (1 _Mkt—l)ykt—l)'

Proof. From Eq. (13), notice that wv; ~

Beta/(ujyj7(1_lj’j)yj) and (p17p27"'apkt,1) is
constructed by transforming (v,;). Hence, Jacobian is

H;“:’ll (H{:—ll (1- vl)) s Applying the transformation,

we obtain the density function as

1 (-, vk, -1

i
fro = (H_j:ll B(u;vj, (1 - Mj)’/j)) ay,
ki1 jl/jfl ki1 Kj
Hj;1 (P? (Zi:j Pi+0‘kt71> )

ki1
where a, , =1 -3 .15 pj.

B(p;vj, (1 — pj)vy) =
and
rj = (1= pj-1)vj—1 — vy — (L= py)v;

Now let us write a; = p;v; and b; = (1 — u;)v;. Then
Eq. (22) becomes equivalent to Eq. (10). Hence

Ry ~ GDD(Mll/lv (1 - Ml)ylv ceey

My 1 V15 (1 - lu’kf,—l)ykt,—l)

This proves the first part.

We prove the second part as follows. When

(1= pj—1)vj1 = pivs + (L= py)vj = v
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for 2 < j < k;_1 by Proposition 5 we get

- /’[’kt—l)ykt—l)
O

Ry ~ Dirichlet(uivy, ..., ik, Vi,_,, (1

S.4.3. Proof of Theorem 2

Theorem 2. For oy, as defined in Eq. (13) with parameters
w, v, and any e 6 (0, 1) if ;> 1/2 for all j, then oy, < €

whenever k > @ log with probability more than 1 — e.

Proof. From Eq. (13), using direct algebra one can rewrite

o = ]_[;:1 (1 — v;), and using the independence of v; we
find that
=[] El - vy (22)
j=1
Using Markov inequality, we get
1
p(a2r > ?) S QT}E[Q%‘] (23)
Now using the fact that E[1 — v;] = 1 — p] < 1/2 and

choosing a positive integer  such that € > 5 one obtains

plag, >€) <e (24)
Then the proof follows by putting k& = 2r. O
S.5. Proofs related to PPF of OSBP
S.5.1. Proof of Lemma 2
Lemma 2. Let, (v;) be defined as in Eq. (13),
and Gi4_1|lp,v,I' ~ OSBP(u,v,T). Then V7,
vjl 21015 g, vj ~ Beta(pvy + g5 =1, (1= pg)vj + hy).

Proof. By definition of z, and OSBP, the following holds.
Pz = jlzve—1,vime ) = v THZ (1= w0), j € (k1]
Pzt = ki1 + z1-1, 01k, _,) = ;1_11(1 — )

Now, following (Pitman, 1995), it is straight forward to see
that,

koo 1
2o,y ) = [ ((1 - Ua)hjngj )

Now, we compute the posterior p(v1, . ..
follows.

p(z1,...

s Uke_y |21:0—1) @S
X p(Zh ce Zt_1|U1;kt_1)p(’U1, ce 7vkt,—1)
o~ Hkr 1 ((1 — s )h,,UJ 11);‘”%‘71(1 _ Uj)(l—,uj)uj—l)

After marginalizing over all other v;, | € [k;—1]\j, the
lemma follows. O

S.5.2. Proof of Theorem 3

Theorem 3. Let (1), oy, , be defined in Eq. (14), and
Gi:—1|p, v, I ~ OSBP(u,v,T). Then, we have:
_ ivit+g; (1 )vi+h
= ul;+gj+ghv—1 Hl 1 VZ+Z;+;'“ 1+ J € [ke-1],

_ 71k A—p)vithy
ki1 = Lhi=1 VFgfm—1

(25)

Proof. By definition of OSBP, for 1 < j < k;_1, p(G¢ =

QjlG -1, {u}) = p(z = jlzru—1, {ui}) = p;.
Now by definition of PPFs in Eq. (14), one can write 7; as

H 1 —w) [z1:-1, o v
=1
j—1

E [vj [21:4-1, 15, V5] H

[Py|21t 1,4, V] =

(1 =) |21, 1, 1]

The second equation follows using the independence prop-
erty of {v;}. Following definition of OSBP, we similarly

get By, , defined in Eq. (14), By, , = Hf:ll E[(1 —
v)|21:t—1, i1, 1. Theorem follows using Lemma 2. O

S.6. Proofs related to SUMO
DPMM can be described as

\V/Z$1Nf( ) ¢1|GNG GNDP(’Y) ) (26)

Using OSBP we propose following for DPMM

ke
Vt, Gt|G1:t—17HNZJ 1 p](SQJ +Oékt 150k, L+

Vi, el pri ~ mult(dri),  builGr ~ Gy (27)
(pj). (Q;) and cvy,_, are as defined in OSBP. Each G, takes
value from (Qq,...,Qg,_,;Qk,_,+1), Where Q; = Gy and
all other Q; are sampled from D P(v;, H). The second line
in Eq. (27) models DPMM with G, similar to Eq. (26).

Parameter settings. Regarding the parameters
(5, v4,7;), we set forall j u] = u, for some 0.5 < p < 1.
vji = (I = pyvj_y and v1 = v (y > 0 as in Eq. (26)).
Hence v; = (1 — p)7 1.

We use, v; = pv; and hence v; = p(1 — p)?~1v. Thus,
there are two parameters ;1 and DPMM parameter .

Equivalence with DPMM. Before prove the Theorem 4,
we need to revise one useful result as follows.

Theorem B. Let, Q; ~ DP(v;,H;) forj =1,...,k and
(c1,...,¢k) ~ Dirichlet(v1,72,-..,7k) be independent
of Q1,...,Qp, then

Z 161Q5 ~ DP(Z] 175 Zz]:k”ﬁ.{]) (28)
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Proof. g; ~ Gammal(y;, ) for j = 1,...,k indepen-
dently. Let, G; = g;Q;, then Gy, ..., Gy are independent
Gamma processes with G; ~ I'P(vy;H;).

Let G/ = Z?Zl Gj, then by Proposition 2, G’ ~
k k
PP(3 ;- vH)). Letg’ = >, g;, then

G’ G’ G’ G’

¢'(Q) Y6 YEgo@ ¢

’ . .
Hence, % is a normalized Gamma process, hence

—NDPZ Yis

Again, if ¢c; =
(c1,..-,cn)

and we can say

j 17] )
Z] 17])

g—i, then

~ Dirichlet(ay, ..., ax)

/

‘ L

k k
Z =9
= =

Z? 1 Vil
Thus Z] 165Q; NDP(ZJ 1%’W)' =

S.6.1. Proof of Theorem 4

Theorem 4. For any t € N, each x;; sampled using
model Eq. (27) has marginal distribution same as x; sam-
pled with DPMM in Egq. (26) with G ~ DP(ct,H), where
¢t = th v+ (L= p)ke=14. Furthermore, for any € > 0
and t > 0, with probability greater than 1 — €, each x; in
Eq. (27) has margmal distribution same as x; in Eq. (26)
with G ~ DP(ZJ 175 H), when ky > k > élog 1
Also, fort — 00, each xy; in Eq. (27) has marginal distri-
bution same as x; in Eq. (26) with G ~ DP(~, H).

Proof. There are three parts of the Theorem, we prove
them one by one.

Let us write,
Rt = (P1,02, s Phyy Ok y)
then by Lemma 1, R; is GDD distributed.

Now, we use

v = vy = p(l = p)’ "y

that satisfies
vi= 1= pj—1)vj
for 5 > 1. Hence, by Lemma 1,

Ry ~ DZ'TiChlet(/,lel, Mala, ...

s Wk Vi1 s (1= o,y )V 1)DP(Z] 1% H) for k > ébg%

Now we can apply Theorem B, and by that
Gy ~ DP(Ct, H/)

Ky
o = (Z] 11 vt (1 - :u’kt—l)ykt—l)H —nu

kt
Z_] 11 Vi + (1 - :u’kt—l)ykt—l

For any ¢, using the parameter setting we get
Gy ~ DP(Ct, H)
Ky .
a=(Sigu+0-phen) @)
Hence the marginal distribution of each x;; sampled from

model in Eq. (27) is always equivalent to that of DPMM.
The difference will be in scale.

Then the first part of the Theorem follows immediately
from Eq. (27) (second line) and Eq. (26).

For the second part, let us write
S5y pibo; + kb,

= (S ) (o =

= (1 an)(Zho)

= (1-a) () s

501 + Zfikl pL 6Qk+1)
5Q.7‘ + 1f§zk 5Qk+1)

6QJ) + ak(SQk+1 (30)

Now we can say

kt—1
Py = Z pj(SQ_j + akt—l(stt71+l
j=1
is a mixture of two distributions I, _, and dq,, ., forany
t, where
ki1 0;
Jk?t—l = Z k — 6Q:
Pt DAty
. Probability of sampling G; from J, , is1 — oy, ;.
Again as,
(ph s 7pkt—17akt—l) ~ Dir("/h sy Vhe—1s (1 M)kt ! )
by Proposition 4,
P1 Pky_1 .
e ~ Dirichlet(y1, ...,
(1 — oy, 1_ ey, ) (’Yl rykt—l)

Hence Ji, , is equivalent to

ki1

P(Y 7.H
j=1

Now, from Theorem 2, for k;_; > z log o Qp,_, < €
for any € > 0 with probability at least 1—e

Hence, with probability at least 1 — ¢ we sample G; from
. Now, for ¢ such that
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ky > k, xy; sampled from model in Eq. (27), is marginally
equivalent to x; sampled from model DPMM in Eq. (26)
with G ~ DP(ZJ 175 H).

For the third part, from Theorem 1, as t — oo, P, — P* =
> 51 pjdq, such that 3572, p; = 1 a.s. By the first part,
P* becomes equivalent to DP(Z;‘;l v;, H).

Now we can write

Z%—/WZ 1—p %

7=

Hence, P* becomes equivalent to D P(~, H).

Thus, for ¢, P, going to P*, z;; sampled from model in
Eq. (27), is marginally equivalent to z; sampled from
model DPMM in Eq. (26) with G ~ D P(, H). This proves
the Theorem. O

S.7. Application of OSBP on other BNP
models

Recall that, in the mini-batch setup, we consider a stream-
ing dataset as (X¢) = (X1,Xo,...,X;), where X; =
{zidiae 41 For clarity in notation, we represent X;
as {xy;}7 ;. We will describe application of OSBP on
Pitman-Yor process, stick-breaking process and higherar-
chical Dirichlet process to share information across mini-
batches. However, unlike DPMM the equivalence relation-
ship is not straight forward to prove in these cases, and are
left for future work.

We will consider H as a probability measure over a measur-
able space (2, B), and f(.) is the distribution for the data
model. (p;) and oy, , are as defined in OSBP.

The inference mechanism follows from Theorem 3 and the
inference techniques for the corresponding models. It is
straight forward to derive them as outlined in Section 3.2
for DPMM. We do not describe them here.

S.7.1. OSBP on Pitman-Yor process

Pitman-Yor process (PYP) (Pitman & Yor, 1997) can be de-
scribed following the stick-breaking representation as fol-
lows. For 0 < a < 1, and b > —a, any random probability
measure G ~ PY P(a,b,H) if

G:Z
Vi, v; ~ Beta(l —a,b+ ja);

10505;, 61 =v1, 0; foJH (1—1}1)
Bj ~H 3D

PYP mixture model can be described as follows.

Vi, z; ~ f($i);

'for simplicity we have assumed n = fid.

Vi, ¢;|G ~ G (32)

Now we apply OSBP on PYP mixture model to get

\V/t, Gt|Q1:kt_1aH ~ Zg 1 pJ(SQ —|—Oé]§r 1P)}/F)(a b H)
Vi, T4l dri ~ f(dsi),

Application of OSBP on PYP is similar to that of DP. The
inference follows from the Theorem 3, and PPFs of PYP.

S.7.2. OSBP on stick-breaking process

Recall that, stick-breaking process (SBP) (Ishwaran &
James, 2001) can be described following the stick-breaking
representation as follows. Let, a;,b; > 0, and a =
(a1,a2,...),b = (b1,b2,...). Any random probability
measure G ~ SBP(a,b, H) if following holds.

G=32,0;0p,, 01 =01, 0;=v; [[IZ; (1 —v)
Vj, vj ~ Beta(a;,b;); p; ~H (34)

SBP mixture model can be described as follows.

Vi, x; ~ f(¢i); Vi, $i|G~G (35)

Imposing OSBP on SBP mixture model yields the follow-
ing model.

Vi, Gt|Qlikt717HNZ] 1 pJ(SQ + g, 1SBP(a b, H)
Vi, T4i|pei ~ [(Dri), Vi, ¢ui|Ge ~ Gy (36)

SBP being generalized version subsumes many BNP priors
including DP and PYP. The construction of OSBP based
sequential model for DP, PYP and SBP are similar. Es-
sentially, following this structure it is easy to build such
sequential models for a wide range of BNP models. The
inference will follow from Theorem 3 and inference proce-
dure of SBP. Unfortunately, SBP does not have PPFs and
truncated methods are applied (Ishwaran & James, 2001).

S.7.3. OSBP on hierarchical Dirichlet process

Hierarchical Dirichlet process (HDP) (Teh et al., 2006) is
defined as below for v, A > 0
Go ~ DP(’Y) H)
Vi, G; ~ DP()\7 G()) 37

HDP assumes grouped data, that x; represent a group
which consists of data points {z;; }. HDP mixture model
can be described as
Go ~ DP(77 H)
Vi, G ~ DP()\, Go)
VI, zi ~ f(dir); alGi ~ Gi (38)

Imposing OSBP on HDP mixture model by using the base
measure I' of OSBP as DP(v, H), we get

Vi, ¢4i|Gy ~ Gy (33)
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Vi, Gt|Qlikt717H ~ Z] 1 pJ6Q + g, 1DP(7ﬂ )
Vi, Gy ~ DP(X, Gy)
Vi, zit| s ~ f(Prit),  rit|Gei ~ G (39)

The inference will follow from Theorem 3 and the predic-
tion rule for HDP, Chinese restaurant franchise (CRF) (Teh
et al., 20006).

S.8. SUMO for DPMM on document
clustering

We describe SUMO here for text datasets. Each data point
x; is a document which has multiple examples (words). A
words in document ¢ is denoted by z;;. The data model is
2 ~ mult(¢;). In order to maintain conjugacy, ¢; has
Dirichlet prior.

(¢;) are sampled from (Q,) where Q; ~ DP(v;,H) in
Eq. 27). We can say Q; = .7, (jr0y,, following
Eq. (12), where ((;,-) form the stick-breaking weights and
atoms are 1;,.. Let, {Bs} is set of global components. Then
each 1;, € {f,} ensures same components across t. We
can create global components by ad-hoc merging of com-
ponents across t. But we prefer a more technical approach
of using a.s. discrete H by H ~ DP(\, Dirichlet(n)). We
can write H = Y~ , 0,85,, where 35 ~ Dirichlet(n) and
(05) form the stick-breaking weights.

Given this setup, we introduce alternative variables to
speed up the mixing of the Markov chain following stan-
dard approach. Recall that, z; = j if Gz = Q;. Let,
ay = rif ¢y = Y and 2z = j. So r is the index of
the mixture component in prior G; assigned to document ¢
of mini-batch ¢. If s is the index of global mixture compo-
nent represented by ;. in Q;, then we define b;, = s if
Yjr = Bs. Furthermore, let y;; = sif z; = j and b, = s.
y¢; 1S the index of the global mixture component assigned
to document ¢ in mini-batch ¢. ¢ and 1 can be retrieved
from z, a,b and 3.

Due to this representation, the equivalent random quanti-
ties are Ay = {{au}’ }_,, Bk, = {bjr}ff:l, and
Y1 = {{yu}i1}i_,. We integrate out (Q;) and H fol-
lowing Chinese restaurant process (CRP), (p;) following
Theorem 3, and {3, } following Dirichlet multinomial con-
jugacy. So, we need to infer A;, B, and z; at time ¢ after ob-
serving X;. The posterior of {5} and other variables can
be retrieved after the inference through a, b, z and (X;).

Notation. Superscript with hyphen denotes set minus,
e.g. Xt_' = Xt\xtz, and X; " = X¢\Xer, where Xep =
{xmlam =r} X5 = X1:¢\Xep, and X7y = Xio\z4se
Alt = Al.t\atl ;r = th\bztr Ls(xtz) and Ls(Xtr)
are the likelihood of x;; and Xy, respectively for mixture
component s.

X Lbztr(xti)(m;’i" + M) (1 =

Recursive computation of likelihood. L (x;) is the like-
lihood of z; under mixture component s, that is Lg(x¢;) =
P(Ti| Y1, X1:0—1, X;i). After observing X1.;1 and x;i,
Ls(2+) can be computed by recursively applying Bayes
theorem using Dirichlet multinomial conjugacy as follows.

p(@e| Y1, X1am1,X; ) =
JIL; p(@eiglye = s, 85)p(Bs|Xy ", X1:e—1, Y1) dBs

r (Mo +Csptes) vt Covteni—
= foﬁSl’nf (Z ”7 )) H ﬁn dﬁs

H F(Ww‘i-cw-l-c vl)

_ D, (e +Csvtery) T1, Pot+Covtey/+ety)

T T, T(e+Csvtesy) T, (o+Cavtesy )+ct,)
[ L3, (mo+Csoteg)tel,) I

[T, T(no+Csv+esy +ciy,)
_ F(Zv(nv+0sv+c;f)) 1, F(nv+C5v+c;j+civ) (40)

[L, T(nv+Csvtesy) T2, (Mu+Csutesy)+cl,)
Integration happens following the property that Ss ~
Dirichlet(n) and using Dirichlet multinomial conjugacy.
Please refer to the Appendix for detailed steps. We define
the sufficient statistics as below.

t;11 2?21 Zf Wyii = s, 2155 = v]
Cov = Doiy 3y Uyss = s, 2005 = 0]
—1

Csy = Zq 1,qi Zf [Yq = s, T1q5 = V]
o =2 Wyei = 5,105 = 0] (4D

Covtey)+el,—1
;7;}1"!‘ 5U+(’sv +(’sv dﬂg

Csp =

Similarly, we compute Lg(Xy-) the likelihood of Xy, for
mixture component S, p(X¢r|Y1.4, X1:¢—1, X; ) as follows.

ST aymr TLy P(eiflyei = 5, B5)p(Bs|X1:0-1, Y10 )dBs

Z (7]1)+Ceu+('gvr))
- f Hz l:a¢;=r Hf ﬁsx“f [1, C(no+Coutea)

H ﬁm+Cw+cw dﬁs

_ P, (mutCsvtes, ) T1, D(utCsvtes, +ci,)
[T, T(no+Csvtesy) D, (Mo+Csvtesy)+el,)

We define the required sufficient statistics as below.
=30 >opllay =7 20 = j,bjr = 8,245 = V]
ol =3 Y Mar = q,q # 1y bag = 5,05 = v)42)

Inference of a. We infer a as below.

plag = r|ATE Biig,, 21:4, X1:4) X (43)
p(xti‘ati =T, 21t A;; Bliktﬂ sz)p(atl = 7"|A;?7 Zt)
where p(xyilan = Z1;t7A;in1:kt7Xii) is Ly, (z4i).

plas = r|ATY, 2;) comes from CRP as

L’I") + 'szt Lbthne'w (xti)LT (44)

tr = r=rncw], Myyr = 22‘11 Iay; = 7],
My =S i lm =g =] (49)

m.,, denotes the number of time component ;. is as-
signed in the current mini-batch, whereas M;,. dontes how
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many times ;, is assigned across all the mini-batches
seen so far excluding the current mini-batch. When a
NewW Tyeq 1S sampled we obtain b,,,. ., from p(b.,, =
Snew|?1:t, Al:ts B1:k, , X1:¢) Which is shown later.

Inference of z. Following the dependence structure in
Eq. (27), z; is independent of X; given Y;. So, we can
infer z from p(z¢ = j|z1.4—1, Y¢, B1.k,) @S

o ([T, p(yei = 8|21:6, Bk, )] P(2¢ = jl21:40-1) (46)
p(zt = j|#1.t—1) comes from Theorem 3. Recall that y;; =
bzrani- SO D(yi = 8|z¢ = j,B1ut, 21.4—1) comes from CRP
by integrating out G; and H.

Let, t; = L[zt = Jnew) t2 = L[zt = J, s=sneuw)s 10 =

kit . ky—

ey 3js =3 Ibjr = 8,2 = jland 1 5 = Zj’:f Tjs-
I, 19 denote if 3, is present in Qj, H respectively. Tjs
counts number of times [ is present among {1 }.

Notice that, when ¢ = 0, (2 must be 0 and that implies
the situation that the global component (3 is present in Q.
When, Lg =1, L(S) = 0 signifies that 3 is not present in Qj»
but is present in H. Whereas (2 = 1 implies 7 = 1 and 3,
is not present in any prior. When, ¢; = 1, :J must be 1, but
Y may be 1 or 0. Hence there are following scenarios.

i. t; = 0, = 0: then we can say p(y,; = S|z =
JyBlits Z1:0—1) X Tjs.

ii. t; =0, = 1,2 = 0: then we need to sample a
global component from H which is proportional to ;1 .

Js = Zf‘:’f > Ibjr = 5,2 = j], sum over all existing

priors. So p(yi = s|z¢ = J, B1u, 21:0—1) X M.

iii. ,; = 0,4 = 1,9 = 1: then we need to sample a new
global component from Dirichlet(n) which is propor-
tional to X. So p(yui = S|zt = J, B1:t, 21:0—1) X Ay

iv. ¢ =1, Lg =1, L‘; = 0: then we need to sample
a new global component from Dirichlet(n) which is
proportional to X\. So p(y; = s|2z = J,B1:t, 21:0—1) X Ts.
7; does not appear here as there is not Q; and no corre-
sponding CRP.

v. tj = 1,4 =1, = 1: then we need to sam-

ple a new global component from Dirichlet(n) which
is proportional to A. So p(yi; = S|zt = 7, B1:t, 21:4—1) X A.

Combining them together we get p(z =
j|21:t717Yt7B1:kt)
o [Ty 9351 = 12) + 7508 (1,61 = ) + A2 )|

mi(1 =)+ [J,S(l -9+ /\Lg]aktflbj 47)

Algorithm 2 SUMO for DPMM on text datasets.
Require: (X:), i, A,y and n
1: fort=1,2,...do

2 Initialize global component assignments Y

3 for iter = 1to I do

4 Sample z; from p(z¢|2z1.4—1, Y¢,J)

5: for ; = 1ton do

6: Sample ay; from p(a; = 7|A7 ", 24, X, M, C)
7 end for

8 Sample B, from p(b.,, = s|B, 2, X¢, M, N, C)
9 end for

10:  Compute ¢, m, n and update C, M, N, and J
11:  Discard local variables X;, A;, and Yy

12: end for

Ensure: z, A,B,C, M, N

m; and oy, , are as defined in Eq. (25).

Inference of b. We infer b as below.

P(bzyr = 8]21:t, ALty Biik, s X1:¢) X (43)
p(Xtr|let7 At, Bl:kt ’ X;?)p(bztr = 5|Bz_tT7 21ty Al:t, Bl:kt)

—try -
where p(XtT‘Zlih At Biag,, Xl:tr) 18 Ly (Xtr) and p(bzw =
s|BZ", z1:4, A1, B1:k, ) comes from CRP as

X LS(Xtr)(n;:s + N7 (1 = ts) + ALs,.,, (X¢r)£5(49)

we define the variables as

bs = Us=sncal, 155 =22 Ibzyg = s,
NTF =P Al = sl £ H]  (50)

n_,'; denotes the number of times component 3, has been
used in the mixing distribution Q,, excluding ;.. Whereas
N3 ?* denotes how many times component 35 is used in

unique mixing distributions (Q;) except Q., .

SUMO for DPMM on text datasets. Using Eq. (43) in
step 5, and Eq. (46), Eq. (48) in step 7 of SUMO (Algo-
rithm 1), we obtain SUMO for text datasets presented in
Algorithm 2.

Notice that from Eq. (44), Eq. (47) and Eq. (49) that by
maintaining sufficient statistics M, J, N and L, we need not
store the local variables A1.;—1, Y1.6—1, X1:4—1-
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