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S.1. Introduction
We discuss some relevant mathematical background first in
Section S.2, those are directly used in the paper or proofs.
We include some examples and properties related to OSBP
and PPFs of OSBP in Section S.3. There are two lemmas
and four theorems in the paper. We prove them here in
Sections S.4, S.5, S.6 related to OSBP, PPF ofOSBP and
SUMO respectively. We additionally provide one theorem
(Theorem A) and a lemma (Lemma 1) which are strongly
related to OSBP but could not be included in the paper
due to space constraint. Then we provide construction of
dependency over mini-batches using OSBP on PYP, SBP,
HDP in Section S.7. Finally we give inference details for
DPMM for text datasets in Section S.8.

S.2. Mathematical background
This is not a comprehensive review, we cover only thos def-
initions and properties that will be referred later in this ma-
terial.

S.2.1. Gamma distribution and Gamma process

Definition 1. (Gamma Distribution). A non-negative real-
valued random variable X is said to have a Gamma dis-
tribution with shape parameter α and scale parameter β,
denoted by X ∼ Gamma(α;β), if its probability density
function is given by

f(x;α, β) =
xα−1e−x/β

βαΓ(α)
(1)

Proposition 1. Let X1, X2, . . . be a countable collection
of independent Gamma distributed variables as Xk ∼
Gamma(αk;β). Then

∞∑
k=1

Xk ∼ Gamma(

∞∑
k=1

αk, β) (2)

Definition 2. (Gamma process) A random measure G on Ω

is called a Gamma process with base measure H and scale
parameter α, denoted by G ∼ ΓP (αH), if it satisfies

• for each measurable subset A ∈ B, G(A) has a
Gamma distribution as G(A) ∼ Gamma(αH(A)),
and

• G is completely random

Proposition 2. If Gj ∼ ΓP (αjHj) for j = 1, . . . , k, then∑k
j=1 Gj ∼ ΓP (

∑k
j=1 αjHj).

S.2.2. Dirichlet distribution and Dirichlet process

Let Sd denote the probability simplex in the d-dimensional
real vector space Rd, as

Sd = {(x1, . . . , xd) ∈ Rd : xi ≥ 0,∀i;
d∑
i=1

xi = 1} (3)

Definition 3. (Dirichlet distribution) An Sd-valued ran-
dom variable X is said to have a Dirichlet distribution, de-
noted by X ∼ Dir(α1, . . . , αd) with α1, . . . , αd > 0, if it
has a probability density function given by

f(x1, . . . , xd;α1, . . . , αd) =
Γ(
∑d
i=1 αi)∏d

i=1 Γ(αi)
xαi−1
i (4)

Proposition 3. Let X1, X2, . . . , Xk be k in-
dependent Gamma distributed variables as
Xj ∼ Gamma(αj ;β). Then for Yj =

Xj∑k
j=1 Xj

,

(Y1, . . . , Yk) ∼ Dirichlet(α1, . . . , αk).

Proof. This can be seen using the procedure of transforma-
tion of random variables.

Proposition 4. If (x1, . . . , xk−1, xk) ∼
Dirichlet(α1, . . . , αk−1, αk), then (y1, . . . , yk−1) ∼
Dirichlet(α1, . . . , αk−1), where yj =

xj∑k−1
l=1 xl

for

j = 1, . . . , k − 1.
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Proof. Let Z1, . . . , Zk be k independent variables such
that Zj ∼ Gamma(αj , β) for j = 1, . . . , k. Then
(x1, . . . , xk) ∼ Dirichlet(α1, . . . , αk), for xj =

Zj∑k
l=1 Zl

using Proposition 3.

We can write,

yj =
xj∑k−1

l=1 xl
=

Zj∑k
r=1 Zr∑k−1

l=1

Zl∑k
r=1 Zr

=
Zj∑k−1

l=1 Zl
(5)

Thus, by Proposition 3, (y1, . . . , yk−1) ∼
Dirichlet(α1, . . . , αk−1).

Definition 4. (Dirichlet Process). Let, H is a probabil-
ity measure over a measurable space (Ω,B), and γ is
a positive real number. A random measure G on Ω is
called a Dirichlet process with base measure H, denoted
by G ∼ DP (γ, H) if for any finite measurable partition
(B1, B2, ..., Bk) of Ω,

(G(B1), ..., G(Bk)) ∼ Dirichlet(γH(B1), ..., γH(Bk)) (6)

Stick-breaking representation of DP. (Sethuraman,
1994) proposed a stick-breaking construction of DP such
that if G ∼ DP (γ, H), then

G =

∞∑
j=1

θjδβj
, βj ∼ H (7)

δβj
denotes an atomic distribution where the entire proba-

bility mass is concentrated at βj . {θj} are constructed as
follows.

θ1 = v1, θj = vj

j−1∏
l=1

(1− vl), vj ∼ Beta(1, γ) (8)

The above construction can be understood as breaking a
unit length stick using stick fractions vj . (Sethuraman,
1994) showed that

∑∞
j=1 θj = 1 when {θj} are constructed

as above. Often θ is said to be distributed as GEM(γ).

S.2.3. Generalized Dirichlet distribution

Definition 5. (Generalized Dirichlet distribution) An Sk-
valued random variable X is said to have a generalized
Dirichlet distribution, denoted by

X ∼ GDD(a1, b1, . . . , ak−1, bk−1) (9)

with aj , bj > 0, ∀j if it has a probability density function
given by

f(x1, . . . , xk; a1, b1, . . . , ak−1, bk−1) =(∏k−1
j=1 B(aj , bj)

)−1

x
bk−1−1
k∏k−1

j=1

(
x
aj−1
j

(∑k
i=j xi

)bj−1−aj−bj
)

(10)

where xk = 1−
∑k
j=1 xj . B(aj , bj) =

Γ(aj)Γ(bj)
Γ(aj+bj) .

Example. Let k = 4, then the density function of
(x1, x2, x3, x4) is(∏3

j=1B(aj , bj)
)−1

xa1−1
1 xa2−1

2 xa3−1
3 xb3−1

4

(x2 + x3 + x4)b1−a2−b2(x3 + x4)b2−a3−b3 (11)

Proposition 5. By setting bj−1 = aj + bj , 2 ≤ j ≤ k −
1 (b0 is arbitrary), X ∼ GDD(a1, b1, . . . , ak−1, bk−1) is
equivalently X ∼ Dirichlet(a1, a2, . . . , ak−1, bk−1).

Proof. This follows directly from Eq. (10) and Eq. (4).

S.2.4. Stick-breaking process

We have defined SBP in the paper, however we re-iterate
the discussion to show one useful result in Lemma A re-
garding SBP.

Any almost sure (a.s.) discrete probability measure G is a
stick-breaking process (SBP) (Ishwaran & James, 2001) if
it can be represented as

G =
∑∞
j=1 θjδβj

, θ1 = v1, θj = vj
∏j−1
l=1 (1− vl)

aj , bj > 0, vj ∼ Beta(aj , bj), βj ∼ H (12)

H is a diffuse measure over a measurable space (Ω,B) and
{aj , bj} are set of parameters.

The following lemma gives a condition over {aj , bj} so
that

∑∞
j=1 θj = 1 a.s.

Lemma A. (Ishwaran & James, 2001). For the random
weights in an SBP,

∑∞
j=1 θj = 1 a.s. iff

∑∞
j=1 E[log(1 −

vj)] = −∞. Alternatively, it is sufficient to check that∑∞
j=1 log(1 +

aj
bj

) = +∞.

Proof. See appendix by Ishwaran & James (2001).

Important special cases. SBP subsumes many well
known BNP priors. When aj = 1 and bj = γ for all j, SBP
becomesDP (γ, H) following the constructive definition of
Dirichlet process by Sethuraman (1994). Another popu-
lar BNP prior, the two parameter Poisson-Dirichlet process
or Pitman-Yor process (PYP) (Pitman & Yor, 1997) can
also be obtained as a special case when aj = 1 − λ and
bj = γ + jλ for all j. There are many other existing pri-
ors which are special cases of SBP, see (Ishwaran & James,
2001) for a detailed discussion.

S.3. Appearance in order and OSBP
In this section, we first give an example of appearance in
order phenomenon, and then we recall the definition of
OSBP, followed by one essential information about OSBP.
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S.3.1. Example of appearance in order

Here, we give an example of the appearance in order phe-
nomenon defined in Section 2.1.

Let, t = 9 and (Yi) is (a, a, b, a, c, a, b, a, a). Notice that,
k9 = 3 with {a, b, c} as {Ȳ1, Ȳ2, Ȳ3}. Now we have

B1 = {1, 2, 4, 6, 8, 9}, B2 = {3, 7}, and B3 = {5}

Then we say that it is appearing in order as

[9]− B1 = {3, 7, 5} ⇒ 3 ∈ B2

[9]− (B1 ∪ B2) = {5} ⇒ 5 ∈ B3

whereas if Ȳ = {a, c, b} then

B1 = {1, 2, 4, 6, 8, 9}, B2 = {5} and B3 = {3, 7}

is not appearing in order as

[9]− B1 = {3, 7, 5} but 3 /∈ B2

S.3.2. Definition of OSBP

As we will be referring to OSBP in later parts of this
material, for the sake of easy reading we present them here
again.

Let Γ be a diffuse probability measure over random mea-
sures, and µ,ν denote the set of scalar hyper-parameters
{µj} and {νj} respectively such that 0 < µj < 1,
νj > 0, ∀j. (G1, G2, . . .) is an appearing in order
sequence of random measures. (Q1, . . . , Qkt−1

) is the
set of kt−1 unique values among G1:t−1. We define,
G1, G2, . . . ∼ OSBP(µ,ν,Γ) if G1 ∼ Γ and for any t ≥ 2,
the following holds:

Gt |G1:t−1, (ρj),Γ ∼
∑kt−1

j=1 ρjδQj
+ αkt−1

Γ

ρ1 = v1, ∀j > 1, ρj = vj
∏j−1
l=1 (1− vl)

vj |µj , νj ∼ Beta (µjνj , (1− µj)νj)
αkt−1

= 1−
∑kt−1

j=1 ρj (13)

S.3.3. Diffuse base measure of OSBP ensures
appearance in order

The need of the base measure Γ to be a diffuse measure is
explained with the following Theorem.

Theorem A. The samples from OSBP, (G1, G2, . . .) ∼
OSBP (µ,ν,Γ) will be appearing in order almost surely
iff the base measure of OSBP, Γ in Eq. (13) is a diffuse
probability measure.

Proof. When Γ is diffuse, for any two samples Qj and Ql
sampled from Γ will be almost sure distinct iff j 6= l. By
definition of OSBP, if for any t, Gt ∼ Γ then kt = kt−1 +1
and Qkt = Gt. As Γ is diffuse measure, Qkt is a.s. distinct

from all Qj , j < kt. Thus Gt 6= Gl for all l < t. Hence,
[t]\ ∪kt−1

l=1 Bl = t and Bkt = [t].

We show the sufficient condition by contradiction. Sup-
pose, Γ is atomic. Let t = 4, k4 = 2, and Q2 6= Q1. There
are two partitions B1 and B2. Now when G5 is sampled
suppose it is sampled from Γ, then Q3 = G5. Then by def-
inition of appearance in order [5]\(B1 ∪ B2) should be in
B3 which is [5]. As Γ is atomic let Q3 = Q1. Then G5 be-
comes equal to G1 and so 5 ∈ B1 and [5]\(B1 ∪ B2) = ∅.
Contradiction. So, whenever a Qj is sampled from Γ, kt
must increase. kt will increase iff Qj is different from all
Ql, l < j. Hence Γ has to be a diffuse probability mea-
sure.

This is a slightly strict condition on the base measure than
that for DP and PYP which also points out one key differ-
ence with the common BNP priors such as DP, PYP.

S.3.4. Comparison with DP and PYP on PPF.

DP and Pitman-Yor process (PYP) (Pitman & Yor, 1997)
are the only other two existing SBP class of priors possess-
ing PPFs. It is worth to note the difference of OSBP from
DP, PYP in terms of PPFs due to modeling appearance in
order. Recall that, PPF (πj , j ∈ [kt−1] and σkt−1

) are de-
fined by Pitman (1996) as

πj = p(zt = j|z1:t−1,Θ), j ∈ [kt−1],

σkt−1
= p(zt = kt−1 + 1|z1:t−1,Θ) (14)

where Θ denotes the set of hyper-parameters. The PPFs
corresponding toDP (γ, H), also popularly referred as Chi-
nese restaurant process (CRP) are

πj =
gj

γ+t−1 , j ∈ [kt−1],

σkt−1 = γ
γ+t−1 (15)

where gj = |Bj |, and Bj = {i|zi = j}. Thus,
∑kt−1

j=1 gj =

t − 1 and
∑kt−1

j=1 πj + αkt−1
= 1. Similarly, PPFs of

PY P (a, b, H) (0 ≤ a < 1 and b > −a) are

πj =
gj−a
b+t−1 , j ∈ [kt−1],

σkt−1
= b+akt−1

b+t−1 (16)

Note that,
∑kt−1

j=1 gj − a = t − 1 − akt−1 and hence∑kt−1

j=1 πj + αkt−1 = 1. By using a = 0 and b = γ, PYP
becomes equivalent to DP.

Notice from Theorem 3 that, πj for OSBP can be writ-
ten as aj

∏j−1
l=1 (1 − al), where aj =

µjνj+mj−1
νj+mj+rj−1 . From

Lemma 2, aj is the posterior expectation of vj condi-
tioned on G1:t−1. Thus in OSBP, the probability of joining
partition Bj directly depends on not joining the partitions
{B1, B2, . . . , Bj−1}. Whereas, in case of DP and PYP the
probability of joining partition Bj depends only on the size
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of Bj and the probabilities of joining partitions only loosely
depend because of summing up to one.

Moreover, Corollary 1 of (Lee et al., 2013) shows that the
only PPF which lead to an exchangeable sequence are those
for which πj is a function of partition Bj only. This is true
for DP and PYP but not for OSBP. In Case of OSBP, πj is
a function of all the existing partitions (Bj).

An important implication of this interpretation is that even
though the partitions (and hence atoms) can be assumed
to appear in order for DP and PYP, the effect of ordering
of the partitions is lost due to the symmetric nature of this
function which leads to an exchangeable partition probabil-
ity function (EPPF by (Pitman, 1996)), or equivalently an
exchangeable sequence illustrating another view why DP
and PYP are not suitable to model appearance in order.

S.3.5. Example related to Theorem 2

Example. Let µj > 1/2, ∀j, and ε = 0.01. For k = 14,
αk ≤ 0.01 with probability more than 0.99.

S.4. Proofs related to OSBP
S.4.1. Proof of Theorem 1

Theorem 1. If P1 = Γ, Pt =
∑kt−1

j=1 ρjδQj
+ αkt−1

Γ for
t > 1 and P∗ =

∑∞
j=1 ρjδQj

such that
∑∞
j=1 ρj = 1,

where (ρj), (Qj), αkt and Γ as defined in Eq. (13) with
parameter µ,ν, then limt→∞ Pt = P∗ a.s.

Proof. By definition, kt is the cardinality of the set
(Q1, Q2, . . . , Qkt). So for any t > 0, kt = kt−1 if no
new atom is sampled, and kt = kt−1 + 1 if a new atom
is sampled from the base measure Γ. From Eq. (13), the
probability of kt = kt−1 + 1 is αkt−1

and probability of
kt = kt−1 is

∑kt−1

j=1 ρj which by definition is 1 − αkt−1 .
Hence, we get

kt−1 ≤ kt a.s. (17)

As, kt+1 ≥ kt a.s., and αkt = 1 −
∑kt
j=1 ρj by definition,

with ρj > 0 a.s. for all j, we get

αkt−1 ≥ αkt a.s. (18)

kt ≥ kt−1 and not bounded above. For any K > 0, there is
a t′ such that kt′ > K, otherwise K is the upperbound of
kt. So we can say

lim
t→∞

kt =∞ a.s. (19)

On the other hand, αkt ≤ αkt−1
and bounded below by

zero. For any ε > 0 there is a t′ such that αkt′ < ε, other-
wise ε is the lower bound of αkt . Hence,

lim
t→∞

αkt = 0 a.s. (20)

Thus, we can write limt→∞ Pt = limt→∞
∑kt
j=1 ρjδQj

+

limt→∞ αktΓ = limkt→∞
∑kt
j=1 ρjδQj

+ limt→∞ αktΓ =∑∞
j=1 ρjδQj

= P∗. That proves the Theorem.

Corollary 1. For t ∈ N and αkt as defined in OSBP,
limkt→∞ αkt = 0 a.s.

Proof. This corollary is immediate from the above result.
However we give one alternative proof here. Note that (1+
µjνj

(1−µj)νj
) > 1, hence

∑∞
j=1 log(1 +

µjνj
(1−µj)νj

) = +∞. By
Lemma A it follows that

∑∞
j=1 ρj = 1 a.s. Therefore,

lim
kt→∞

αkt = 0 a.s. (21)

S.4.2. Proof of Lemma 1

Lemma 1. For any t ∈ N, Rt = (ρ1, ρ2, . . . , ρkt−1
, αkt−1

)
as defined in Eq. (13) is distributed as generalized Dirichlet
distribution (Connor & Mosimann, 1969). Furthermore, if
(1 − µj−1)νj−1 = νj for j, 2 ≤ j ≤ kt−1, then Rt ∼
Dirichlet(µ1ν1, µ2ν2, . . . , µkt−1νkt−1 , (1−µkt−1)νkt−1).

Proof. From Eq. (13), notice that vj ∼
Beta (µjνj , (1− µj)νj) and (ρ1, ρ2, . . . , ρkt−1

) is
constructed by transforming (vj). Hence, Jacobian is∏kt−1

j=1

(∏j−1
l=1 (1 − vl)

)−1

. Applying the transformation,
we obtain the density function as

fRt =
(∏kt−1

j=1 B(µjνj , (1− µj)νj)
)−1

α
(1−µkt−1

)νkt−1
−1

kt∏kt−1

j=1

(
ρ
µjνj−1
j

(∑kt−1

i=j ρi + αkt−1

)κj

)
where αkt−1

= 1−
∑kt−1

j=1 ρj .

B(µjνj , (1− µj)νj) =
Γ(µjνj)Γ((1− µj)νj)

Γ(νj)

and

κj = (1− µj−1)νj−1 − µjνj − (1− µj)νj

Now let us write aj = µjνj and bj = (1 − µj)νj . Then
Eq. (22) becomes equivalent to Eq. (10). Hence

Rt ∼ GDD(µ1ν1, (1− µ1)ν1, . . . ,

µkt−1
νkt−1

, (1− µkt−1
)νkt−1

)

This proves the first part.

We prove the second part as follows. When

(1− µj−1)νj−1 = µjνj + (1− µj)νj = νj
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for 2 ≤ j ≤ kt−1 by Proposition 5 we get

Rt ∼ Dirichlet(µ1ν1, . . . , µkt−1
νkt−1

, (1− µkt−1
)νkt−1

)

S.4.3. Proof of Theorem 2

Theorem 2. For αkt as defined in Eq. (13) with parameters
µ,ν, and any ε ∈ (0, 1), if µj > 1/2 for all j, then αk ≤ ε
whenever k ≥ 2

log 2 log 1
ε with probability more than 1− ε.

Proof. From Eq. (13), using direct algebra one can rewrite
αr =

∏r
j=1(1− vj), and using the independence of vj we

find that

E[αr] =

r∏
j=1

E[1− vj ] (22)

Using Markov inequality, we get

p(α2r >
1

2r
) ≤ 2rE[α2r] (23)

Now using the fact that E[1 − vj ] = 1 − µj < 1/2 and
choosing a positive integer r such that ε > 1

2r one obtains

p(α2r ≥ ε) ≤ ε (24)

Then the proof follows by putting k = 2r.

S.5. Proofs related to PPF of OSBP
S.5.1. Proof of Lemma 2

Lemma 2. Let, (vj) be defined as in Eq. (13),
and G1:t−1|µ,ν,Γ ∼ OSBP (µ,ν,Γ). Then ∀j,
vj |z1:t−1, µj , νj ∼ Beta(µjνj + gj − 1, (1−µj)νj +hj).

Proof. By definition of z, and OSBP, the following holds.

p(zt = j|z1:t−1, v1:kt−1
) = vj

∏j−1
l=1 (1− vl), j ∈ [kt−1]

p(zt = kt−1 + 1|z1:t−1, v1:kt−1
) =

∏kt−1

l=1 (1− vl)

Now, following (Pitman, 1995), it is straight forward to see
that,

p(z1, . . . , zt−1|v1:kt−1
) =

∏kt−1

j=1

(
(1− vj)hjv

gj−1
j

)
Now, we compute the posterior p(v1, . . . , vkt−1

|z1:t−1) as
follows.

∝ p(z1, . . . , zt−1|v1:kt−1
)p(v1, . . . , vkt−1

)

∝
∏kt−1

j=1

(
(1− vj)hjv

gj−1
j v

µjνj−1
j (1− vj)(1−µj)νj−1

)
After marginalizing over all other vl, l ∈ [kt−1]\j, the
lemma follows.

S.5.2. Proof of Theorem 3

Theorem 3. Let (πj), σkt−1 be defined in Eq. (14), and
G1:t−1|µ,ν,Γ ∼ OSBP (µ,ν,Γ). Then, we have:

πj =
µjνj+gj−1
νj+gj+hj−1

∏j−1
l=1

(1−µl)νl+hl

νl+gl+hl−1 , j ∈ [kt−1],

σkt−1
=
∏kt−1

l=1
(1−µl)νl+hl

νl+gl+hl−1 (25)

Proof. By definition of OSBP, for 1 ≤ j ≤ kt−1, p(Gt =
Qj |G1:t−1, {vl}) = p(zt = j|z1:t−1, {vl}) = ρj .
Now by definition of PPFs in Eq. (14), one can write πj as

E [ρj |z1:t−1, µ, ν] = E

[
vj

j−1∏
l=1

(1− vl) |z1:t−1, µ, ν

]

= E [vj |z1:t−1, µj , νj ]

j−1∏
l=1

E [(1− vl) |z1:t−1, µl, νl ]

The second equation follows using the independence prop-
erty of {vj}. Following definition of OSBP, we similarly
get βkt−1 defined in Eq. (14), βkt−1 =

∏kt−1

l=1 E[(1 −
vl)|z1:t−1, µl, νl]. Theorem follows using Lemma 2.

S.6. Proofs related to SUMO
DPMM can be described as

∀ixi ∼ f(φi), φi|G ∼ G, G ∼ DP (γ, H) (26)

Using OSBP we propose following for DPMM

∀t, Gt|G1:t−1, H ∼
∑kt−1

j=1 ρjδQj
+ αkt−1

δQkt−1+1

∀i, xti|φti ∼ mult(φti), φti|Gt ∼ Gt (27)

(ρj), (Qj) and αkt−1
are as defined in OSBP. Each Gt takes

value from (Q1, . . . , Qkt−1
, Qkt−1+1), where Q1 = G1 and

all other Qj are sampled from DP (γj , H). The second line
in Eq. (27) models DPMM with Gt similar to Eq. (26).

Parameter settings. Regarding the parameters
(µj , νj , γj), we set forall j µj = µ, for some 0.5 < µ < 1.
νj = (1 − µ)νj−1 and ν1 = γ (γ > 0 as in Eq. (26)).
Hence νj = (1− µ)j−1γ.

We use, γj = µνj and hence γj = µ(1 − µ)j−1γ. Thus,
there are two parameters µ and DPMM parameter γ.

Equivalence with DPMM. Before prove the Theorem 4,
we need to revise one useful result as follows.

Theorem B. Let, Qj ∼ DP (γj , Hj) for j = 1, . . . , k and
(c1, . . . , ck) ∼ Dirichlet(γ1, γ2, . . . , γk) be independent
of Q1, . . . , Qk, then∑k

j=1 cjQj ∼ DP (
∑k
j=1 γj ,

∑k
j=1 γjHj∑k
j=1 γj

) (28)



OSBP for Sequential MCMC Inference of BNP Models

Proof. gj ∼ Gamma(γj , β) for j = 1, . . . , k indepen-
dently. Let, Gj = gjQj , then G1, . . . , Gk are independent
Gamma processes with Gj ∼ ΓP (γjHj).

Let G′ =
∑k
j=1 Gj , then by Proposition 2, G′ ∼

ΓP (
∑k
j=1 γjHj). Let g′ =

∑k
j=1 gj , then

G′

G′(Ω)
=

G′∑k
j=1 Gj(Ω)

=
G′∑k

j=1 gjQj(Ω)
=

G′

g′

Hence, G′

g′ is a normalized Gamma process, hence

G′

g′
∼ DP (

k∑
j=1

γj ,

∑k
j=1 γjHj∑k
j=1 γj)

)

Again, if cj =
gj
g′ , then

(c1, . . . , ck) ∼ Dirichlet(a1, . . . , ak)

and we can say

G′

g′
=

k∑
j=1

gj
g′

Qj =

k∑
j=1

cjQj

Thus
∑k
j=1 cjQj ∼ DP (

∑k
j=1 γj ,

∑k
j=1 γjHj∑k
j=1 γj)

).

S.6.1. Proof of Theorem 4

Theorem 4. For any t ∈ N, each xti sampled using
model Eq. (27) has marginal distribution same as xi sam-
pled with DPMM in Eq. (26) with G ∼ DP (ct, H), where
ct =

∑kt−1

j=1 γj+(1−µ)kt−1γ. Furthermore, for any ε > 0
and t > 0, with probability greater than 1 − ε, each xti in
Eq. (27) has marginal distribution same as xi in Eq. (26)
with G ∼ DP (

∑k
j=1 γj , H), when kt ≥ k ≥ 2

log 2 log 1
ε .

Also, for t → ∞, each xti in Eq. (27) has marginal distri-
bution same as xi in Eq. (26) with G ∼ DP (γ, H).

Proof. There are three parts of the Theorem, we prove
them one by one.

Let us write,

Rt = (ρ1, ρ2, . . . , ρkt−1
, αkt−1

)

then by Lemma 1, Rt is GDD distributed.

Now, we use

γj = µνj = µ(1− µ)j−1ν

that satisfies
νj = (1− µj−1)νj−1

for j > 1. Hence, by Lemma 1,

Rt ∼ Dirichlet(µ1ν1, µ2ν2, . . . , µkt−1νkt−1 , (1−µkt−1)νkt−1)

Now we can apply Theorem B, and by that

Gt ∼ DP (ct, H′)

H′ =
(
∑kt−1

j=1 γj + (1− µkt−1
)νkt−1

)H∑kt−1

j=1 γj + (1− µkt−1)νkt−1

= H

For any t, using the parameter setting we get

Gt ∼ DP (ct, H)

ct =
(∑kt−1

j=1 γj + (1− µ)kt−1γ
)

(29)

Hence the marginal distribution of each xti sampled from
model in Eq. (27) is always equivalent to that of DPMM.
The difference will be in scale.

Then the first part of the Theorem follows immediately
from Eq. (27) (second line) and Eq. (26).

For the second part, let us write∑k
j=1 ρjδQj

+ αkδQk+1

= (
∑k
l=1 ρl)

(∑k
j=1

ρj∑k
l=1 ρl

δQj
+ αk∑k

l=1 ρl
δQk+1

)
= (1− αk)

(∑k
j=1

ρj∑k
l=1 ρl

δQj
+ αk

1−αk
δQk+1

)
= (1− αk)

(∑k
j=1

ρj∑k
l=1 ρl

δQj

)
+ αkδQk+1

(30)

Now we can say

Pt =

kt−1∑
j=1

ρjδQj
+ αkt−1

δQkt−1+1

is a mixture of two distributions Jkt−1 and δQkt−1+1
for any

t, where

Jkt−1 =

kt−1∑
j=1

ρj∑kt−1

l=1 ρl
δQj

. Probability of sampling Gt from Jkt−1
is 1− αkt−1

.

Again as,

(ρ1, . . . , ρkt−1
, αkt−1

) ∼ Dir(γ1, . . . , γkt−1
, (1−µ)kt−1γ)

by Proposition 4,

(
ρ1

1− αkt−1

, . . . ,
ρkt−1

1− αkt−1

) ∼ Dirichlet(γ1, . . . , γkt−1
)

Hence Jkt−1
is equivalent to

DP (

kt−1∑
j=1

γj , H)

Now, from Theorem 2, for kt−1 ≥ 2
log 2 log 1

ε , αkt−1 < ε
for any ε > 0 with probability at least 1− ε.

Hence, with probability at least 1 − ε we sample Gt from
DP (

∑k
j=1 γj , H) for k ≥ 2

log 2 log 1
ε . Now, for t such that
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kt ≥ k, xti sampled from model in Eq. (27), is marginally
equivalent to xi sampled from model DPMM in Eq. (26)
with G ∼ DP (

∑k
j=1 γj , H).

For the third part, from Theorem 1, as t →∞, Pt → P∗ =∑∞
j=1 ρjδQj

such that
∑∞
j=1 ρj = 1 a.s. By the first part,

P∗ becomes equivalent to DP (
∑∞
j=1 γj , H).

Now we can write

∞∑
j=1

γj = µγ

∞∑
j=1

(1− µ)j−1 =
µγ

1− (1− µ)
= γ

Hence, P∗ becomes equivalent to DP (γ, H).

Thus, for t, Pt going to P∗, xti sampled from model in
Eq. (27), is marginally equivalent to xi sampled from
model DPMM in Eq. (26) with G ∼ DP (γ, H). This proves
the Theorem.

S.7. Application of OSBP on other BNP
models

Recall that, in the mini-batch setup, we consider a stream-
ing dataset as (Xt) = (X1, X2, . . . , Xd̄), where Xt =
{xi}n̄ti=n̄(t−1)+1

1. For clarity in notation, we represent Xt

as {xti}n̄i=1. We will describe application of OSBP on
Pitman-Yor process, stick-breaking process and higherar-
chical Dirichlet process to share information across mini-
batches. However, unlike DPMM the equivalence relation-
ship is not straight forward to prove in these cases, and are
left for future work.

We will consider H as a probability measure over a measur-
able space (Ω,B), and f(.) is the distribution for the data
model. (ρj) and αkt−1 are as defined in OSBP.

The inference mechanism follows from Theorem 3 and the
inference techniques for the corresponding models. It is
straight forward to derive them as outlined in Section 3.2
for DPMM. We do not describe them here.

S.7.1. OSBP on Pitman-Yor process

Pitman-Yor process (PYP) (Pitman & Yor, 1997) can be de-
scribed following the stick-breaking representation as fol-
lows. For 0 ≤ a < 1, and b > −a, any random probability
measure G ∼ PY P (a, b, H) if

G =
∑∞
j=1 θjδβj

, θ1 = v1, θj = vj
∏j−1
l=1 (1− vl)

∀j, vj ∼ Beta(1− a, b+ ja); βj ∼ H (31)

PYP mixture model can be described as follows.

∀i, xi ∼ f(φi); ∀i, φi|G ∼ G (32)

1for simplicity we have assumed n = n̄d̄.

Now we apply OSBP on PYP mixture model to get

∀t, Gt|Q1:kt−1
, H ∼

∑kt−1

j=1 ρjδQj
+ αkt−1PY P (a, b, H)

∀i, xti|φti ∼ f(φti), ∀i, φti|Gt ∼ Gt (33)

Application of OSBP on PYP is similar to that of DP. The
inference follows from the Theorem 3, and PPFs of PYP.

S.7.2. OSBP on stick-breaking process

Recall that, stick-breaking process (SBP) (Ishwaran &
James, 2001) can be described following the stick-breaking
representation as follows. Let, aj , bj > 0, and a =
(a1, a2, . . .), b = (b1, b2, . . .). Any random probability
measure G ∼ SBP (a, b, H) if following holds.

G =
∑∞
j=1 θjδβj , θ1 = v1, θj = vj

∏j−1
l=1 (1− vl)

∀j, vj ∼ Beta(aj , bj); βj ∼ H (34)

SBP mixture model can be described as follows.

∀i, xi ∼ f(φi); ∀i, φi|G ∼ G (35)

Imposing OSBP on SBP mixture model yields the follow-
ing model.

∀t, Gt|Q1:kt−1
, H ∼

∑kt−1

j=1 ρjδQj
+ αkt−1SBP (a, b, H)

∀i, xti|φti ∼ f(φti), ∀i, φti|Gt ∼ Gt (36)

SBP being generalized version subsumes many BNP priors
including DP and PYP. The construction of OSBP based
sequential model for DP, PYP and SBP are similar. Es-
sentially, following this structure it is easy to build such
sequential models for a wide range of BNP models. The
inference will follow from Theorem 3 and inference proce-
dure of SBP. Unfortunately, SBP does not have PPFs and
truncated methods are applied (Ishwaran & James, 2001).

S.7.3. OSBP on hierarchical Dirichlet process

Hierarchical Dirichlet process (HDP) (Teh et al., 2006) is
defined as below for γ, λ > 0

G0 ∼ DP (γ, H)

∀i, Gi ∼ DP (λ, G0) (37)

HDP assumes grouped data, that xi represent a group
which consists of data points {xil}. HDP mixture model
can be described as

G0 ∼ DP (γ, H)

∀i, Gi ∼ DP (λ, G0)

∀l, xil ∼ f(φil); φil|Gi ∼ Gi (38)

Imposing OSBP on HDP mixture model by using the base
measure Γ of OSBP as DP (γ, H), we get
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∀t, Gt|Q1:kt−1
, H ∼

∑kt−1

j=1 ρjδQj
+ αkt−1DP (γ, H)

∀i, Gti ∼ DP (λ, Gt)

∀l, xtil|φtil ∼ f(φtil), φtil|Gti ∼ Gti (39)

The inference will follow from Theorem 3 and the predic-
tion rule for HDP, Chinese restaurant franchise (CRF) (Teh
et al., 2006).

S.8. SUMO for DPMM on document
clustering

We describe SUMO here for text datasets. Each data point
xi is a document which has multiple examples (words). A
words in document i is denoted by xil. The data model is
xil ∼ mult(φi). In order to maintain conjugacy, φi has
Dirichlet prior.

(φi) are sampled from (Qj) where Qj ∼ DP (γj , H) in
Eq. (27). We can say Qj =

∑∞
r=1 ζjrδψjr following

Eq. (12), where (ζjr) form the stick-breaking weights and
atoms are ψjr. Let, {βs} is set of global components. Then
each ψjr ∈ {βs} ensures same components across t. We
can create global components by ad-hoc merging of com-
ponents across t. But we prefer a more technical approach
of using a.s. discrete H by H ∼ DP (λ,Dirichlet(η)). We
can write H =

∑∞
s=1 θsδβs , where βs ∼ Dirichlet(η) and

(θs) form the stick-breaking weights.

Given this setup, we introduce alternative variables to
speed up the mixing of the Markov chain following stan-
dard approach. Recall that, zt = j if Gt = Qj . Let,
ati = r if φti = ψjr and zt = j. So r is the index of
the mixture component in prior Gt assigned to document i
of mini-batch t. If s is the index of global mixture compo-
nent represented by ψjr in Qj , then we define bjr = s if
ψjr = βs. Furthermore, let yti = s if zt = j and bjr = s.
yti is the index of the global mixture component assigned
to document i in mini-batch t. φ and ψ can be retrieved
from z, a, b and β.

Due to this representation, the equivalent random quanti-
ties are A1:t = {{ali}n̄i=1}tl=1, B1:kt = {bjr}ktj=1, and
Y1:t = {{yli}n̄i=1}tl=1. We integrate out (Qj) and H fol-
lowing Chinese restaurant process (CRP), (ρj) following
Theorem 3, and {βs} following Dirichlet multinomial con-
jugacy. So, we need to infer At, B, and zt at time t after ob-
serving Xt. The posterior of {βs} and other variables can
be retrieved after the inference through a, b, z and (Xt).

Notation. Superscript with hyphen denotes set minus,
e.g. X−it = Xt\xti, and X−rt = Xt\Xtr, where Xtr =
{xti|ati = r}. X−tr1:t = X1:t\Xtr, and X−ti1:t = X1:t\xti.
A−ti1:t = A1:t\ati. B−rzt = Bzt\bztr. Ls(xti) and Ls(Xtr)
are the likelihood of xti and Xtr respectively for mixture
component s.

Recursive computation of likelihood. Ls(xti) is the like-
lihood of xti under mixture component s, that is Ls(xti) =
p(xti|Y1:t, X1:t−1, X−it ). After observing X1:t−1 and X−it ,
Ls(xti) can be computed by recursively applying Bayes
theorem using Dirichlet multinomial conjugacy as follows.

p(xti|Y1:t, X1:t−1, X−it ) =∫ ∏
f p(xtif |yti = s, βs)p(βs|X−it , X1:t−1, Y1:t)dβs

=
∫ ∏

f βsxtif

Γ(
∑

v(ηv+Csv+c−i
sv ))∏

v Γ(ηv+Csv+c−i
sv )

∏
v β

ηv+Csv+c−i
sv−1

sv dβs

=
Γ(

∑
v(ηv+Csv+c−i

sv ))∏
v Γ(ηv+Csv+c−i

sv )

∏
v Γ(ηv+Csv+c−i

sv +cisv)

Γ(
∑

v(ηv+Csv+c−i
sv )+cisv)∫ Γ(

∑
v(ηv+Csv+c−i

sv )+cisv)∏
v Γ(ηv+Csv+c−i

sv +cisv)

∏
v β

ηv+Csv+c−i
sv +cisv−1

sv dβs

=
Γ(

∑
v(ηv+Csv+c−i

sv ))∏
v Γ(ηv+Csv+c−i

sv )

∏
v Γ(ηv+Csv+c−i

sv +cisv)

Γ(
∑

v(ηv+Csv+c−i
sv )+cisv)

(40)

Integration happens following the property that βs ∼
Dirichlet(η) and using Dirichlet multinomial conjugacy.
Please refer to the Appendix for detailed steps. We define
the sufficient statistics as below.

Csv =
∑t−1
l=1

∑n̄
i=1

∑
f I[yli = s, xlif = v]

csv =
∑n̄
i=1

∑
f I[yti = s, xlif = v]

c−isv =
∑n̄
q=1,q 6=i

∑
f I[ytq = s, xlqf = v]

cisv =
∑
f I[yti = s, xlif = v] (41)

Similarly, we compute Ls(Xtr) the likelihood of Xtr for
mixture component s, p(Xtr|Y1:t, X1:t−1, X−rt ) as follows.∫ ∏n̄

i=1:ati=r

∏
f p(xtif |yti = s, βs)p(βs|X1:t−1, Y1:t)dβs

=
∫ ∏n̄

i=1:ati=r

∏
f βsxtif

Γ(
∑

v(ηv+Csv+c−r
sv ))∏

v Γ(ηv+Csv+c−r
sv )∏

v β
ηv+Csv+c−r

sv −1
sv dβs

=
Γ(

∑
v(ηv+Csv+c−r

sv ))∏
v Γ(ηv+Csv+c−r

sv )

∏
v Γ(ηv+Csv+c−r

sv +crsv)

Γ(
∑

v(ηv+Csv+c−r
sv )+crsv)

We define the required sufficient statistics as below.

crsv =
∑n̄
i=1

∑
f I[ati = r, zt = j, bjr = s, xtif = v]

c−rsv =
∑n̄
i=1

∑
f I[ati = q, q 6= r, bztq = s, xtif = v](42)

Inference of a. We infer a as below.

p(ati = r|A−ti1:t , B1:kt , z1:t, X1:t) ∝ (43)
p(xti|ati = r, z1:t, A−i1:t, B1:kt , X−i1:t)p(ati = r|A−ti1:t , zt)

where p(xti|ati = r, z1:t, A−i1:t, B1:kt , X−i1:t) is Lbztr (xti).
p(ati = r|A−ti1:t , zt) comes from CRP as

∝ Lbztr (xti)(m
−i
ztr + Mztr)(1− ιr) + γbzt Lbztrnew

(xti)ιr (44)

ιr = I[r=rnew], mztr =
∑n̄
i=1 I[ati = r],

Mjr =
∑t−1
l=1

∑n̄
i=1 I[zl = j, ali = r] (45)

mztr denotes the number of time component ψjr is as-
signed in the current mini-batch, whereas Mjr dontes how
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many times ψjr is assigned across all the mini-batches
seen so far excluding the current mini-batch. When a
new rnew is sampled we obtain bztrnew from p(bztr =
snew|z1:t, A1:t, B1:kt , X1:t) which is shown later.

Inference of z. Following the dependence structure in
Eq. (27), zt is independent of Xt given Yt. So, we can
infer z from p(zt = j|z1:t−1, Yt, B1:kt) as

∝ [
∏n̄
i=1 p(yti = s|z1:t, B1:kt)] p(zt = j|z1:t−1) (46)

p(zt = j|z1:t−1) comes from Theorem 3. Recall that yti =
bztati . So p(yti = s|zt = j, B1:t, z1:t−1) comes from CRP
by integrating out Gt and H.

Let, ιj = I[zt = jnew], ιjs = I[zt = j, s=snew], ι0s =∏kt
l=1 ι

l
s, Jjs =

∑
r I[bjr = s, zt = j] and J.s =

∑kt−1

j=1 Jjs.
ιjs, ι

0
s denote if βs is present in Qj , H respectively. Jjs

counts number of times βs is present among {ψjr}.

Notice that, when ιjs = 0, ι0s must be 0 and that implies
the situation that the global component βs is present in Qj .
When, ιjs = 1, ι0s = 0 signifies that βs is not present in Qj ,
but is present in H. Whereas ι0s = 1 implies ιjs = 1 and βs
is not present in any prior. When, ιj = 1, ιjs must be 1, but
ι0s may be 1 or 0. Hence there are following scenarios.

i. ιj = 0, ιjs = 0: then we can say p(yti = s|zt =
j, B1:t, z1:t−1) ∝ Jjs.

ii. ιj = 0, ιjs = 1, ι0s = 0: then we need to sample a
global component from H which is proportional to γj J.s.
J.s =

∑kt−1

j=1

∑
r I[bjr = s, zt = j], sum over all existing

priors. So p(yti = s|zt = j, B1:t, z1:t−1) ∝ λJ.s.

iii. ιj = 0, ιjs = 1, ι0s = 1: then we need to sample a new
global component from Dirichlet(η) which is propor-
tional to λ. So p(yti = s|zt = j, B1:t, z1:t−1) ∝ λγj .

iv. ιj = 1, ιjs = 1, ι0s = 0: then we need to sample
a new global component from Dirichlet(η) which is
proportional to λ. So p(yti = s|zt = j, B1:t, z1:t−1) ∝ J.s.
γj does not appear here as there is not Qj and no corre-
sponding CRP.

v. ιj = 1, ιjs = 1, ι0s = 1: then we need to sam-
ple a new global component from Dirichlet(η) which
is proportional to λ. So p(yti = s|zt = j, B1:t, z1:t−1) ∝ λ.

Combining them together we get p(zt =
j|z1:t−1, Yt, B1:kt)

∝
[∏n̄

i=1 Jjs(1− ιjs) + γjι
j
s

(
J.s(1− ι0s) + λι0s

)]
πj(1− ιj) +

[
J.s(1− ι0s) + λι0s

]
σkt−1

ιj (47)

Algorithm 2 SUMO for DPMM on text datasets.
Require: (Xt), µ, λ, γ and η

1: for t = 1, 2, . . . do
2: Initialize global component assignments Yt
3: for iter = 1 to I do
4: Sample zt from p(zt|z1:t−1, Yt, J)
5: for i = 1 to n̄ do
6: Sample ati from p(ati = r|A−it , zt, Xt,M, C)
7: end for
8: Sample Bzt from p(bztr = s|B−rzt , zt, Xt,M, N, C)
9: end for

10: Compute c, m, n and update C, M, N, and J
11: Discard local variables Xt, At, and Yt
12: end for
Ensure: z, A, B, C, M, N

πj and σkt−1
are as defined in Eq. (25).

Inference of b. We infer b as below.

p(bztr = s|z1:t, A1:t, B1:kt , X1:t) ∝ (48)
p(Xtr|z1:t, At, B1:kt , X−tr1:t )p(bztr = s|B−rzt , z1:t, A1:t, B1:kt)

where p(Xtr|z1:t, At, B1:kt , X−tr1:t ) is Ls(Xtr) and p(bztr =
s|B−rzt , z1:t, A1:t, B1:kt) comes from CRP as

∝ Ls(Xtr)(n
−r
zts + N−zts )(1− ιs) + λLsnew

(Xtr)ιs(49)

we define the variables as

ιs = I[s=snew], n−rzts =
∑
q 6=r I[bztq = s],

N−zts =
∑kt−1

l=1

∑
q I[blq = s, l 6= zt] (50)

n−rzts denotes the number of times component βs has been
used in the mixing distribution Qzt excluding ψjr. Whereas
N−zts denotes how many times component βs is used in
unique mixing distributions (Qj) except Qzt .

SUMO for DPMM on text datasets. Using Eq. (43) in
step 5, and Eq. (46), Eq. (48) in step 7 of SUMO (Algo-
rithm 1), we obtain SUMO for text datasets presented in
Algorithm 2.

Notice that from Eq. (44), Eq. (47) and Eq. (49) that by
maintaining sufficient statistics M, J, N and L, we need not
store the local variables A1:t−1, Y1:t−1, X1:t−1.
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