
Modeling Statement Context to Surface even Rare Diffused Topics

Automatically

Suparna Bhattacharya, Mrinal Kanti Das, Chiranjib Bhattacharyya, K. Gopinath

August 14, 2012

Abstract

Statistical topic models infer topics from statistical information contained in a dataset. Existing topic
models can detect topics if they are present prominently in some files or scattered widely across the files.
However, they fail if a topic is diffused across a small percentage of files or in other words if a topic is neither
prominent inside any file nor diffused widely across files. In this work we explore the problem of detecting
such rare diffused topics. We observe that the local context of lines in a file play a key role in surfacing these
topics. We introduce various mechanisms to control a topic model’s sensitivity towards local context. We
propose CSTM (Context Sensitive Topic Model), a new model that is capable of discovering prominent, widely
diffused as well as rare diffused topics by leveraging the context of individual lines within each file.

Rare diffused topics are quite common in software code, particularly in framework based software. We
evaluate our model on surfacing software concerns automatically at the fine granularity of individual program
statements. CSTM achieves a statement level concern assignment accuracy that agrees 70% of the time with
typical programmer interpretation (as measured using systematically gathered feedback from 35 programmers
for four Java applications). The ability to discover statement level concerns paves the way for a new class of
automated analyses correlating latent concerns with program properties that vary at statement granularity.
As a novel application, we demonstrate a completely unsupervised automatic summarization of byte-code
execution profiles in terms of latent concerns.

1 Introduction

Topic models are widely used in various applications, where a topic is a distribution over the features of a dataset.
In case of text a feature is word in the simplest form of representation. Despite its mathematical nature topics are
found to correlate with human knowledge to some extent in grouping similar words. However, topics are inferred
from the statistical information of a dataset, for example co-occurence of words in a collection of documents
(corpus). A topic can be said to be present if most probable words corresponding to that topic is present. A
topic can be present dominantly in one or more files (prominent), or it may not be present dominantly in a single
file but is scattered widely across the files (widely diffused). Latent Dirichlet Allocation (LDA) [1] is the basic
and the first of its kind to detect prominent topics, whereas MGLDA [2] is designed to detect widely diffused
topics. But both of these models fail if a topic is neither dominant in a file nor scattered globally, that is if a
topic is diffused across a small number of files (rare diffused). In this paper we investigate statistical probabilistic
models to detect rare diffused topics. We observe that local context plays a key role in finding such rare topics,
however the model should be very sensitive to the context. We devise a novel probabilistic model called Context
Sensitive Topic Model (CSTM). We argue that rare diffused topics appear naturally in many places, for example
in software source code when some routines are defined in library (which is unavailable) and used repeatedly in
source files. Further, unless a routine performs an extremely common task, it is unlikely to be referred by a very
large number of files; instead the specialized functionality manifests as a rare diffused topic.

Large complex software applications are routinely built using redeployable components and frameworks. While
these layers ease the development process and enable highly flexible solutions, understanding performance prop-
erties of such software (e.g. for diagnosing inefficiencies, predicting resource consumption, finding runtime bloat,
optimizing energy use) requires significant expertise and effort, even with state-of-the-art tools. An understanding

of the domain or intent of the application can provide more insight than tools that report costs in terms of low
level artifacts (such as methods and components). However, such information may not be available in practice
when using unfamiliar code.

Motivating application: Automatic performance summarization based on latent concern discov-
ery A promising alternative is to devise new automated performance summarization techniques that discover
latent program concerns (in source code) and compute their runtime resource usage. Latent concerns reflect
underlying intent and are not tied to assumptions about the specific nature of concerns. These could be features,
non-functional requirements, design idioms, implementation mechanisms or other conceptual considerations that
can impact the implementation of a program [3]. Summarizing dynamic properties such as runtime resource usage
in terms of latent concerns can provide a novel perspective for performance understanding. For example, it could
be used to aid the estimation of energy expended due to software bloat [4] arising from incidental concerns in
large framework-based applications.

Statistical topic models One way to automatically summarize concerns in source code for approximate
analysis is to use statistical topic models, such as Latent Dirichlet Allocation (LDA). The advantage of this
approach over other concern identification and location techniques (whether generative or query-based [5],) is that
it works without any additional input, knowledge about concern domains or other assumptions about concern
characteristics. This makes it possible to extract a somewhat representative set of latent concerns from a large
unfamiliar software code base in a fully automatic manner unbiased by apriori notions about the specific nature
of concerns.

Technical challenge and scope Despite the possibilities that it can open up, we find that the use of statistical
topic models as an input for applications of this nature is problematic as it raises demanding requirements that
challenge the current state of the art in modeling concerns using LDA and its variants. For instance:

1. Interesting cross cutting concerns (in terms of resource usage) may not always have a prominent presence
in any source module. This is especially true in framework based code where all underlying module sources
may not be available. Existing models cannot usually surface these rare concerns as topics, as the statistical
contribution of modular content typically dominates over statement level information (Section 3).

2. Accurate statement level granularity of concern assignment is required for concern-wise attribution of dy-
namic properties like runtime resource usage and bloat (because different statements contribute differently
to resource usage). LDA is known to behave poorly on small documents with statistically insignificant
textual content, such as individual source code statements seen in isolation.

While point 2 can be covered to a certain extent by suitably engineering a solution that combines existing
methods from topic modeling research, addressing point 1 requires new model extensions. We find that even
applying specialized models such as MG-LDA [2] to software fails to address these challenges (Section 3). Hence
we propose a single extended model called CSTM that jointly addresses challenges 1 and 2. Our key contribution
is to explicitly control the trade-off between modular and contextual contribution of concerns so that the model
is more sensitive to contextual information contained in the neighborhood of a statement; this helps surface even
diffused concerns at statement granularity. LDA and MG-LDA can be obtained as special cases of our more
flexible model.

Evaluation methodology challenge To evaluate the effectiveness of our model, we collect measures of the
diversity of concerns found for four Java applications and design synthetic experiments using a well-understood
application, BerkeleyDB, to expose differences in the sensitivity of alternative models to diffused concerns. This
is not enough, as we also need to confirm that the increased sensitivity obtained using our extensions does not
hurt accuracy. However, concerns are subjective and represent human interpreted concepts; thus there is no
one correct assignment for a given program (Section 2). This makes it difficult to quantitatively measure the
accuracy of the models we investigate. Further, our main goal is not to find specific concerns or perform a specific
predictive task, but to surface a representation or summarization that serves an exploratory purpose (such as
performance understanding). Thus, neither standard information retrieval/concern location metrics like precision
and recall for a specific concern nor intrinsic measures like held-out likelihood, are suitable for evaluating the
effectiveness of the models for this purpose. Instead, we opt for a human (expert1) evaluation approach along the

1programmers familiar with Java

lines recommended in [6] for quantitatively judging interpretability of concern topics and their statement level
assignments.

Contributions

• We devise a probabilistic model, CSTM (Context Sensitive Rare Topic Model), capable of automatic dis-
covery of prominent, diffused and also rare concerns at statement level granularity without any human
input or apriori knowledge (Section 4). The model assigns a mixture of concerns to each statement via
a probabilistic inference procedure that is sensitive to both the surrounding statements (local context) in
which the statement occurs and the containing module.

• We conduct a systematic evaluation of the sensitivity of diffused concern detection, interpretability of
statement level concern assignments and the diversity of concerns found by our CSTM model and LDA-CS,
an adaptation of LDA with an inference procedure for statement level assignment of concerns. Our detailed
evaluation (Section 7) includes a programmer interpretability study where we compile 540 responses on
word intrusion and topic relevance tasks by 35 programmers from different organizations.

• We illustrate a novel application of the model: computing cumulative byte-code profile summaries in terms
of latent concerns (Section 6). This paves the way for a new class of automated analysis correlating latent
concerns with program properties that vary at statement granularity.

2 Problem Definition

2.1 Topics

A topic is a distribution over the words, for example if the kth topic is denoted by βk and words indices are
denoted by i, then

∑V
i=1 βki = 1, where V is the number of words. This implies that βkj is the probability of

picking word indexed by j for topic k. Two important caveats to be noted here is as follows. A topic is thus not
linked to any semantic or inutitive knowledge and two topics can be very close. In other words topics are inferred
from statistical information of a dataset, however despite this non-intuitive mathematical representation topics
are found to correlate with human intuition to some extent [6].

Topic being a distribution over the words, many words may have non-zero probabilities, however in most of
the cases except few words the probabilities are negligibly small, and therefore topic is sometimes referred as soft
clusters of words and in many cases is represented by the most probable few words. A topic can be said to be
present if the most probable representative words corresponding to that topic is present.

Prominent Topics We refer to those topics as prominent topics which are present dominantly in one or more
files.

Widely Diffused Topics Widely diffused topics are not dominant in any single file, however they are present
in a considerable number of files.

Rare Diffused Topics Rare diffused topics are those topics which are neither “prominent” in a single file nor
“widely diffused” across many files. Rare diffused topics are typically present in small quantities (diffused) in a
small number of files.

2.2 Concerns

To support the exploratory context of performance understanding, we take a very broad view of what constitutes
a software concern:

Concern : Any consideration that can impact the implementation of a software program. According to [3] it
could represent “anything a stakeholder may want to consider as a conceptual unit, including features, nonfunc-
tional requirements, design idioms, and implementation mechanisms”. Concerns can exist at many conceptual
levels and do not fit neatly within a single dominant decomposition.

In this work we model a concern using a topic, and we have used topic and concern interchangbly.

Concern Localization : The process of locating the structural or syntactic program units (modules or state-
ments) that implement a given concern. Some program concerns may be modular (i.e. implemented by a single
file or module) while others may be cross-cutting, i.e. dispersed (scattered) across several code modules and
interspersed (tangled) with other concerns.

Diffused Concern : A cross-cutting concern that does not have a prominent presence in any available source
module.

Rare Concern : A diffused concern which is present in small number of files.

2.3 Problem statement

In this chapter, we are interested in the automatic discovery and statement level localization of latent concerns
from unfamiliar source code, with the ability to distinguish statements that implement different concerns even
if they appear in consecutive lines of code within the same module. The model must work without any apriori
knowledge or human input and should be able to surface diverse concerns including diffused concerns.

If P is a software project which consists of M modules, P = {D1, . . . , DM}, where a module consists of N
statements, Dj = {Sj1, . . . , SjN}. Using this notation, we precisely define our problem below.

Objective: Find f such that,
f : P → (Cm, Cc,y)

where Cm is the set of modular concerns and Cc is the set of cross-cutting concerns. Cm captures the prominent
concerns and Cc captures rare and diffused concerns. y = {y11, . . . ,yMN} where yij ∈ the power set of Cm∪Cc, is
the mixture of concerns assigned to Sij , statement j in module i. This captures the observation that a statement
can reflect multiple concerns.

2.4 Evaluation criteria

Given the highly subjective nature of concerns, there is no one true representation of concern assignments for an
application. We select the following criteria for evaluating the effectiveness of different models:

Criteria: Even if a model throws up several incoherent concern topics, we will consider it to be effective (for
an exploratory purpose) as long as it can surface diverse concerns (including diffused ones) and their relevant
statements as interpreted by a human programmer. More precisely,

Let I be the set of valid interpretations fA of the representation of actual program concerns Am and Ac and
their statement-wise assignment yA = {yA11, . . . , y

A
MN}, according to human judgment.

I = {fA : P →
(

Am,Ac,yA
)

}

Then, the effectiveness of the model can be assessed in terms of the following criteria.

1. ∃fA ∈ I for which |Cm ∩Am| and |Cc ∩Ac| is high (Interpretability of Cm and Cc)

2. ∃fA ∈ I for which divergence among the concerns in Cm ∩Am and Cc ∩Ac is high (Diversity of Cm and Cc)

3. ∃fA ∈ I for which overlap between y and yA is high (Interpretability of y)

It is, however, unrealistic that I can be determined in practice. Hence it is difficult to create test datasets for
evaluating the above criteria. However, a systematic evaluation is still possible, if we make the more reasonable
assumption that humans with programming or application domain knowledge can judge whether a given concern
c ∈ Cm∪Cc or whether a particular concern assignment yij is likely to be consistent with some valid interpretation
fA ∈ I. In this scenario, we propose the following evaluation methodology:

• Create a list of concerns a which are known to be present under some particular interpretation fA for a test
project, and check if a ∈ Cm ∪ Cc (criterion 1).

• Measure divergence of Cm ∪ Cc (criterion 2).

• Design a programmer interpretation study to quantify whether samples from Cm, Cc and y are consistent
with some fA ∈ I as judged by several humans with programming domain knowledge (criteria 1 and 3).

In order to test for detection of diffused concerns we design two more tests:

• Inject a diffused external concern w into the test project, and check if w ∈ Cc.

• Prune source files in the test project where a known concern w is prominent, so that it becomes diffused,
and check if w ∈ Cc.

3 Assessing existing models

Several researchers have observed that the notion of a concern in software is very similar to that of a topic in
documents – this has led to the adoption of topic models such as LDA for mining software concerns from source
code [7, 8, 9, 10]. Baldi et. al. proposed that the concept of concerns and topics should be unified by definition
– according to them, “a concern is a latent topic” [8]. Hence, concerns are modeled exactly as topics, i.e. as
multinomial distributions over words present in source code text, which can be estimated by running the LDA
inference algorithm on a collection of (suitably pre-processed) source code files. The document-wise (concern)
topic proportions inferred by the model reflect the concern assignments, the proportions in which concerns are
manifested in each source file (or method).

In this section, we discuss our experiences in applying state-of-the-art statistical topic models to our problem,
automatic latent concern discovery at statement granularity, a much finer granularity than has been attempted
by prior work.

3.1 FINDING 1: LDA cannot detect diffused concerns

Although LDA enables us to discover concerns automatically from software code [8], we find that LDA based
models have two major drawbacks when it comes to finding concerns in individual code statements.

First, these models do not localize the concerns at a very fine level of granularity such as code statements.
One can try to treat each statement as a single entity and apply LDA based topic modeling but it is difficult to
understand the usage of a statement in isolation without looking at the surrounding statements and containing
module for context. We mitigate this issue by adopting a two step approach in LDA-CS, our adaptation of the
prevalent LDA based methodology. We estimate concern topics by treating each source file as a document and
just modify the subsequent inference procedure to treat each statement as a separate document to assign concerns
to statements.

Second, we find that LDA works well in locating prominent concerns, where a prominent concern refers to a
concern (either modular or cross-cutting) that has a prominent presence in at least one source module. However
LDA is unable to detect diffused concerns. We confirmed this by conducting a controlled experiment that
introduces a diffused concern by injecting few (5) statements corresponding to a foreign concern into files belonging
to a project (Please refer to section 7.2 for full details). We observed that LDA could not detect the concern even
when the concern was introduced in all files with more than 100 lines (which covered approximately 50% of the
total number of files).

To address this issue, we explored the use of an alternative model that can estimate topics at a finer location
granularity than an entire document.

Figure 1: Example of 3 contexts, each as a set of 3 consecutive statements in a sliding window mechanism.
Statement 8 or statement 9 alone may not be clearly identified as a copy or buffering concern, but along with
statement 7 it becomes more apparent.

3.2 FINDING 2: MG-LDA is ineffective for source code

Similar challenges have been considered by a specialized model called MG-LDA [2], originally developed for
extracting ratable aspects 2 from online user reviews. In addition to topics which have a global presence in
some files (called global topics), MG-LDA models topics which only occur across small text fragments in many
files (called local topics). Hence we decided to investigate whether MG-LDA could be applied to detect diffused
concerns in software.

However, our controlled experiment showed that even MG-LDA fails to detect the diffused concern. This
happens even when the concern is present in 50% of the files, i.e. in all files with more than 100 lines. On a closer
analysis, our experience with MG-LDA on software datasets uncovered two major issues which make MG-LDA
unsuitable for our problem:

First, we find that a concern can only be detected as a local topic by MG-LDA, if it is present in very large
percentage of files. Unlike ratable aspects in online review data which are present widely across reviews and hence
appropriately modelled as local topics by MG-LDA, cross-cutting concerns are restricted to a smaller percentage
of files, which makes it difficult for MG-LDA to detect these concerns.

Second, many concerns in software packages have a typical dual presence - these concerns are used across
several files (a cross-cutting presence) and defined in a separate file (a prominent modular presence). As the
cross-cutting presence of these concerns is very weak statistically, the modular presence makes these concerns
appear as global topics in MG-LDA instead of local topics. As they are detected as global topics, MG-LDA now
fails to localize these concerns effectively at the statement level.

In the next section we describe a new statistical topic model specifically designed to address these challenges.

4 Context Sensitive Topic Model (CSTM)

We now propose a novel statistical model, called a context sensitive rare topic model(CSTM), which without
assuming any human input is not only able to discover prominent, diffused and rare topics/concerns, but is also
able to localize them at a statement level.

Our model assumes that spatially co-located statements may give us a context to understand the underlying
topic/concern of a statement. Hence, CSTM does not treat a statement alone, but models it in a context of
neighborhood statements. We precisely define a context as a set of T contiguous statements in a file. As there is
no physical boundary between contexts, we build a sliding window of contexts (Figure 1), where the first context
window in a file contains only the first line of the file and each line belongs to multiple overlapping context

2e.g. location, comfort, food, cleanliness and pricing could be ratable aspects in reviews of hotels

Figure 2: Graphical model representation of CSTM. The shaded circles represent inputs and outputs of the model.
The rectangles marked with M, C, S, N imply iteration over M modules, C contexts, S statements and N words.
A directed arrow means that the “from” node influences the “to” node. w is the only observed variable here
representing words in software code, while z represents the concerns. The suffixes “m” and “c” in the parameters
distinguish modules and contexts respectively.

windows. Thus, if there are S number of statements in a file, there are T + S − 1 number of context windows in
that file. Finally, each context is modeled as a distribution over the concerns.

CSTM assumes two levels of abstraction, one at the file level and other at the context level. Thus, in addition
to topics that manifest at the context level which we call contexual topics, there are file level topics which we call
a modular topics. Modular topics mainly captures prominent topics whereas contextual topics capture diffused
and rare topics.

A statement contributes to both the modular topics and the contextual topics in a proportionate manner.
CSTM provides a configuration parameter to allow control over this proportion to adjust the context sensitivity
of the model. If a topic is rare so that it does not appear at a file level, it will remain undetected by models like
LDA but can be detected by CSTM, even if it is confined to the locality of few statements and present in only a
relatively small proportion of files.

The details of the model are described in terms of a graphical model representation (Figure 2) as well as a
generative process (Figure 3). We find experimentally that an asymmetric prior over π alone is not sufficient
to detect rare topics because the posterior inference of π strongly depends on the data and little on the prior
emphasis. Our model is equipped with an external influence through t, which can help increase bias towards
contextual concerns more effectively. ζ is the Bernoulli parameter of this external control variable t. βm and βc

are parameter matrices of sizes Km × V and Kc × V respectively; the matrices represent the concern topic-word
distributions of the Km modular and Kc contextual topics Cm and Cc found by the model (where V is the total
number of distinct words and Km and Kc are specified by the user). βm

ij is probability of picking word j given

that z is the ith modular topic and βc
ij is probability of picking word j given that z is the ith contextual topic. A

topic or concern can be described by the most probable words in the distribution.

Modeling context sensitivity Using the parameter ζ it is possible to introduce external control over the level
of intensity towards discovering topics at the context level. δ from data and t from the external configuration
setting together control the level of context sensitivity of the model. So, we need a function F(δ, t) ∈ {0, 1} such

Figure 3: Generative process of CSTM model for each file f

F ζ Effect Existing Models Topic coverage
δ OR t 0 ignores t (user) MG-LDA prominent & diffused
δ OR t > 0.5 more contextual - prominent & diffused & rare
δ OR t 1 always contextual - diffused & rare
δ AND t 1 ignores t (user) MG-LDA prominent & diffused
δ AND t < 0.5 more modular - prominent & diffused
δ AND t 0 always modular LDA prominent

Table 1: Choice of F , ζ and its implications. If F is 1, contextual topics are selected, else modular topics are
selected.

that if F is 1 then CSTM will choose contextual topics, otherwise modular topics. Varying ζ, and using various
possible definitions of F , we introduce a lot of flexibility in the model. We highlight some interesting special cases
in Table 1.

Inferring concerns: We have used the variational inference EM method to infer the concern or topics and
document wise topic proportions based on the joint distribution of the model described by the generative process
in Fig 3. The detailed inference procedure is described in the section 5.

Localizing Topics to Statements We could assign topics or concerns to statements in two ways. The
naive way is to treat each statement as a module and infer the posterior distribution over the concerns for each
statement. Instead, our model enables us to utilize the context and obtain topic proportions at both module and
context level. Using posterior estimation of θm and θc we can deduce ucijk and umijk, the proportions of the kth

contextual or modular topic respectively for statement Sij . We concatenate the modular and contextual topic
proportions to get uij , and then from uij , we assign topics which have a high contribution to the statement as
follows:

yij = {k | uijk > threshold} (1)

4.1 Boosting diversity among topics

We have observed that if the specified number of topics in the model is increased to a large number with the
intent of locating other topics, in many cases, instead of detecting new topics, topic models repeats topics with
slight variations, while many topics remain un-surfaced.

Following [11], we introduce an asymmetric Dirichlet prior on statement-topic distribution. In addition, we
have tried to increase the gap between the concerns using a novel mechanism. After the estimation of the concerns
are done, we update the topics as follows.

βc
ij = βc

ij

∏

l 6=i

(1− βc
lj)

If a word has high probability in any topic, then this will reduce its probability in other topics, whereas if
a word has low probability in almost all the topics, it will increase the probability in one of the topics. Thus,
we increase the diversity in detecting topics which in turn helps surface relatively rare topics more effectively.
However, the divergence is achieved at the price of coherence of concern topics.

5 Inference

In this section we present the inference of our model CSTM using variational inference [12]. The likelihood of the
dataset following the model as given in Figure 3 is as below.

p(D|αc, αm, αd, λ, ζ, βc, βm)

=

∫

θc

∫

θm

∫

π

∑

z

∑

δ

∑

t

p(w|z, v, t, βc, βm)p(z|v, δ, t, θc, θm)

p(t|ζ)p(v|ψ)p(ψ|λ)p(θc|αc)p(θm|αm)p(π|αd) (2)

Using the maximum likelihood method we can find out the values of the parameters. However, due to coupling
between several variables the problem of computing p(D) is intractable. There are two most popular alternative
methods available in this kind of problems based on variational inference and sampling. In this paper we propose
a variational inference mechanism to solve the model. We define a variational distribution q as below.

q(zc, zm, δ, t, v, pi, ψ) =
S
∏

s=1

q(ψs|ǫs)q(θ
c|γc)q(θm|γm)

N
∏

n=1

[q(zcn|φ
c
n) q(zmn |φmn ,) q(vn|σn)q(tnρn)q(δn|ξn)] (3)

where ǫs(Dirichlet), γc(Dirichlet), γm(Dirichlet), φcn(multinomial), φmn (multinomial) σn(multinomial) ρn(Bernoulli)
and ξn(Bernoulli) are the variational parameters.

If we denote the latent variables by L, then

p(D,L)

q(L)
=
p(L|D)

q(L)
p(D) (4)

After taking expectaion of the log of the above expression with respect to q, we get

log p(D) = Eq[log
p(D,L)

q(L)
]− Eq[log

p(L|D)

q(L)
]

= L+KL(q(L)‖p(L|D)) (5)

KL(q(L)‖p(L|D)) is the Kullback-Leibler divergence between the variational distribution over the latent vari-
ables and the conditional distribution of the latent variables given the observation. As KL-divergence is always
non-negative L gives a lower bound on the log-likelihood of the observation. However equality holds, when
q(L) = p(L|D). If the form of the distribution of q is defined using the conjugacy property in the model, opti-
mizing L with respect to the variational parameters will give us q, which will be equal to p(L|D). Using that q,
we can obtain the model parameters, by maximizing L with respect to the model parameters.

Now,

L = Eq[log p(w|z, δ, t) + log p(z|v, δ, t, θ) + log p(δ|π, v) + log p(t)

+ log p(π) + log p(v|ψ) + log p(ψ) + log p(θl) + log p(θg)]

− Eq[log q(z) + log q(δ) + log q(t) + log q(ψ) + log q(v) + log q(π)

+ log q(θg) + log q(θl)] (6)

log p(w) ≥ L

L = Eq[log p(w, t, z, δ, v, ψ, π, θ
g, θl)]− Eq[log q(t, z, δ, v, ψ, π, θ

g, θl)] (7)

Let Lp = Eq[log p(w, t, z, δ, v, ψ, π, θ
g, θl)] and Lq = Eq[log q(t, z, δ, v, ψ, π, θ

g, θl)]
For detailed derivation please see Appendix at the end. We put the expected terms in the next section followed

by the update rules.

5.1 Terms in Lp

Eq[log p(π|α
m)] =

T+S−1
∑

i=1

[log Γ(

1
∑

k=0

αm
k)−

1
∑

k=0

log Γ(αm
k) +

1
∑

k=0

(αm
k − 1)(Ψ(γmik)−Ψ(

1
∑

j=0

γmij))]

Eq[log p(θ
g|αg)] = log Γ(

Kg

∑

i=1

α
g
i)−

Kg

∑

i=1

log Γ(αg
i) +

Kg

∑

i=1

(αg
i − 1)(Ψ(γgi)−Ψ(

Kg

∑

j=1

γ
g
j))

Eq[log p(θ
l|αl)] =

T+S−1
∑

i=1

[log Γ(

Kl

∑

j=1

αl
j)−

Kl

∑

k=1

log Γ(αl
k) +

Kl

∑

k=1

(αl
k − 1)(Ψ(γlik)−Ψ(

Kl

∑

j=1

γlij))]

Eq[log p(ψ|λ)] =

S
∑

i=1

[log Γ(

T+S−1
∑

j=1

λj)−

T+S−1
∑

k=1

log Γ(λk) +

T+S−1
∑

k=1

(λk − 1)(Ψ(ǫik)−Ψ(

T+S−1
∑

j=1

ǫij))]

Eq[log p(v|ψ)] =

N
∑

n=1

T+S−1
∑

i=1

σni(Ψ(ǫni)−Ψ(

T+S−1
∑

j=1

ǫnj))

Eq[log p(δ|π, v)] =

N
∑

n=1

1
∑

k=0

T+S−1
∑

i=1

ξnkσni(Ψ(γmik)−Ψ(

1
∑

j=0

γmij))

Eq[log p(z|t, v, δ, θ)] =

N
∑

n=1

[

Kg

∑

k=1

φ
g
nkξn0ρn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1ρn0(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))]

+

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1ρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))] +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn0ρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

Eq[log p(w|t, z, δ, β)] =

N
∑

n=1

[

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0ρn0 log β

g
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn0 log β
l
kjIwn=j]

+

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn1 log β
l
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn0ρn1 log β
l
kjIwn=j]

Eq[log p(t)] =

N
∑

n=1

1
∑

k=0

ρnk log ζk

(8)

5.2 Terms in Lq

Eq[log q(θ
g)] =

Kg

∑

i=1

(γgi − 1)(Ψ(γgi)−Ψ(

Kg

∑

j=1

γ
g
j)) + log Γ(

Kg

∑

i=1

γ
g
i)−

Kg

∑

i=1

log Γ(γgi)

Eq[log q(θ
l)] =

T+S−1
∑

i=1

[

Kl

∑

k=1

(γlik − 1)(Ψ(γlik)−Ψ(

Kl

∑

j=1

γlij)) + log Γ(

Kl

∑

j=1

γlij)−

Kl

∑

k=1

log Γ(γlik)]

Eq[log q(π)] =

T+S−1
∑

i=1

[

1
∑

k=0

(γmik − 1)(Ψ(γmik)−Ψ(

1
∑

j=0

γmij)) + log Γ(

1
∑

k=0

γmik)−

1
∑

j=0

log Γ(γmij)]

Eq[log q(ψ)] =

S
∑

i=1

[

T+S−1
∑

k=1

(ǫik − 1)(Ψ(ǫik)−Ψ(

T+S−1
∑

j=1

ǫij)) + log Γ(

T+S−1
∑

j=1

ǫij)−

T+S−1
∑

k=1

log Γ(ǫik)]

Eq[log q(z|δ = g)] =

N
∑

n=1

Kg

∑

i=1

φ
g
ni log φ

g
ni

Eq[log q(z|δ = l)] =
N
∑

n=1

Kl

∑

i=1

φlni log φ
l
ni

Eq[log q(δ|ξ)] =

N
∑

n=1

ξn log ξn + (1− ξn) log(1− ξn)

Eq[log q(v|σ)] =

N
∑

n=1

T+S−1
∑

i=1

σni log σni

Eq[log q(t)] =
N
∑

n=1

1
∑

k=0

ρnk log ρnk

(9)

5.3 Update Rules

5.3.1 Update Rules in E step

φ
g
nk ∝ β

g (ξn0ρn0)
kj exp((ξn0ρn0)(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)))

φlnk ∝ (β
l (ξn0ρn1+ξn1ρn1+ξn1ρn0)
kg Iwn=g) exp(

T+S−1
∑

j=1

σnj(ξn0ρn1 + ξn1ρn1 + ξn1ρn0)(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))

σni ∝ exp(
1

∑

h=0

ξnh(Ψ(γmih)−Ψ(
1

∑

j=0

γmij)) +
Kl

∑

k=1

φlnk(ξn0ρn1 + ξn1ρn1 + ξn1ρn0)(Ψ(γlik)−Ψ(
Kl

∑

h=1

γlih)) + Ψ(ǫni)−Ψ(
T+S−1
∑

j=1

ǫ

ǫik = λk +
N
∑

n=1

σsnkIsn=i

ξn0 ∝ exp(
Kg

∑

k=1

φ
g
nkρn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))

+
Kg

∑

k=1

V
∑

j=1

φ
g
nkρn0 log β

g
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkρn1 log β
l
kjIwn=j)

ξn1 ∝ exp(

N
∑

n=1

[

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn0(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

+

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn0ρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

+

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn0 log β
l
kjIwn=j

+

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn1 log β
l
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn0ρn1 log β
l
kjIwn=j])

ρn0 ∝ exp(log ζ0 +

Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j)

ρn1 ∝ exp(log ζ1 +

Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh)) +

Kl

∑

k=1

V
∑

j=1

φlnkξn1 log β
l
kjIwn=j)

γ
g
i = α

g
i +

N
∑

n=1

φ
g
ni(ξn0ρn0 + ξn0ρn1)

γlik = αl
k +

N
∑

n=1

φlnkσni(ξn1ρn1 + ξn1ρn0)

γmik = αm
k +

N
∑

n=1

ξnkσni

5.3.2 Update Rules for Concerns

β
g
ij ∝

M
∑

d=1

N
∑

n=1

φ
g
dniξdn0ρdn0w

j
dn

βl
ij ∝

M
∑

d=1

N
∑

n=1

φldni(ξdn1ρdn0 + ξdn1ρdn1 + ξdn0ρdn1)w
j
dn (11)

6 Attributing resource usage to latent concerns

In this section, we illustrate an example of a novel application enabled by statement level concern discovery: the
ability to correlate program properties that vary at statement granularity, such as its runtime resource usage,
with automatically discovered latent concerns.

By jointly post-processing the output of an existing profiler and the results of our model, we can estimate the
relative runtime resource consumption of latent concerns for an application or automatically discover concerns that
are resource intensive (and hence potential candidates for optimization). We combine statement level resource
consumption statistics with concern proportions assigned by our model to generate a concern-wise performance
summary instead of summaries in terms of syntactic source code modules (e.g. methods, component packages
etc). This can provide an interesting view of program performance behavior in terms of underlying functional
intent, as opposed to low level implementation modules.

Since concerns can be implemented using other concerns, a richer form of summarization than a flat profile is
useful. For example traditional method-wise profiling often incorporates calling context information. A calling
context tree (CCT) profile (as generated by a bytecode profiler like JP2 [13]) can be converted into a concern
context tree profile by mapping each level in the CCT to the concern proportions assigned to the corresponding
statement. This can then be used to generate various summary views. For example, the cumulative bytecode
execution cost attributed to a concern includes the cumulative resource usage of statements belonging to the
concern and the methods invoked by those statements.

Let R(Sij) be the resource usage (e.g. bytecodes executed) of statement Sij (jth statement of ith module).
Attributing costs in accordance with concern proportions when computing flat profiles is relatively straight-

forward.
Estimated flat resource usage (bytecode execution) cost of the kth concern

Rk =
∑

ij

uijk ∗R(Sij) (12)

Accounting for statement-wise concern proportions when computing the cumulative resource usage of a concern
is more tricky. A CCT node and each of its descendants may be assigned different concern proportions. If a CCT
node is assigned only to the kth concern, then the entire cumulative cost of the node should be attributed to the
kth concern. On the other hand, if the node is not assigned the kth concern, then we should recursively proceed
to apply the same logic to its child nodes. Thus, with probability uijk, we assign the cumulative cost of Sij to
the kth concern and with probability 1− uijk we examine its child nodes. The formula is more simply expressed
in a bottom up fashion in terms of ancestor relationships by noting that the cost of a node Sij should only be
attributed to the kth concern if Sij or any ancestor node in its call chain is assigned to the kth concern.

Estimated cumulative resource usage (bytecode execution) cost of the kth concern

Rcum
k =

∑

ij

R(Sij)(1−
∏

Spq∈Ŝij

(1− upqk)) (13)

where Ŝij = (Sij ∪ ancestor(Sij))
These estimates are approximate, given the statistical nature of the model and statement level concern assign-

ments.

Concern label Concern topic words
Runtime resource usage
% bytecodes executed

lusearch luindex
SEARCH hits searcher score search docs 15% 0%
QUERY query parse phrase queries multi 39% 0%
WRITE (INDEX) write flush optimize characters reopen 3% 46%
STEMMING stemmer stopwords snowball zip net 1% 3%

word letter hyphenation pattern character
TOKEN BUFFER arraycopy begin end buffersize bufpos 3% 0%
EXPLAIN weight explanation score expl val 45% 0%
TIMING date time tools resolution cal 2.6% 0%
READER read input offset seek pos 23% 16%

Table 2: Byte-code execution summaries computed for sample Apache lucene concerns found by CSTM. Results
are shown for two benchmarks DaCapo lusearch and DaCapo luindex. It reports cumulative bytecode execution
cost attributed to a concern as a percentage of total bytecodes executed by the program. Shaded rows are
examples of diffused concerns and they are undetected by LDA-CS.

Table 2 shows results from computing such a concern-wise bytecode execution summary for two benchmarks
from the DaCapo suite [14], lusearch and luindex, which are both based on Apache lucene. It reports the
cumulative bytecode execution cost attributed to sample concerns discovered in Apache lucene by our model
CSTM. We list the top 5 words of a concern topic and assign a label to the concern for ease of interpretation.
The entire process of generating the summary is fully automatic (except the choice of labels for concern topics of
interest).

Note the differences in the profile for the two benchmarks.
The SEARCH and QUERY related concerns, including EXPLAIN, have a high bytecode execution cost when running

lusearch, but are hardly exercised when running luindex. On the other hand the WRITE concern contributes
to a significant percentage of bytecodes executed when running luindex. Some other concerns such as READER
affect the execution cost of both benchmarks. As per the DaCapo benchmark descriptions, luindex uses lucene
to index a set of documents while lusearch uses lucene to perform a text search of keywords over a corpus of
data. Thus the results are intuitive. The TIMING concern is used for timing search queries (e.g. to timeout queries
that might be taking too long), hence relevant for lusearch. The STEMMING concern is used when indexing words
and also when parsing queries.

Some key concerns that account for the resource usage differences, e.g. WRITE and TOKEN BUFFER are diffused
concerns. LDA was unable to detect these concerns. This highlights the importance of modeling statement
context.

7 Empirical Evaluation

In this section, we present findings from an empirical evaluation of the models. We use our models to analyze
four different Java applications (Table 3). We evaluate the results using experiments that expose differences in
concern detection sensitivity and coverage (diversity) of the models, and a human programmer evaluation study
of the interpretability of statement level concern assignments.

Parameter settings: The model parameters are selected uniformly for all the tests and models. In the
experiments reported here we specified 100 concerns for each application. When using CSTM these were divided
into 50 modular concerns and 50 cross-cutting contextual concerns. We have used 3 as the size of the context
window, that is a sentence can belong to 3 context windows (previous, current, next). We set ζ = 0.9 and specified
F as δ OR t.

Regarding setting up the other parameters αc, αd, αm and λ, note that, these parameters are estimated in
our model as described earlier and in Appendix. To set up the initial value of the parameters we have followed
grid search by varying them from 0.01 to 1 in multiples of 10, and manually inspected the concerns detected by

Application Description Files Lines Vocabulary
BerkeleyDB Embedded database engine 238 38954 2733
Apache lucene Text search 958 114228 7869
SPECjbb2005 Server-side Java benchmark 63 9723 1444
DaCapo BLOAT Bytecode-Level optimizer 188 36843 2553

Table 3: Four Java applications of various scales and domains used in our experiments.

MG-LDA on BerkeleyDB if it detects major known concerns. The values we have used across the projects are –
αc, αd, αm as 0.01, and λ = 0.1. The same set of values have been used in CSTM too. Following [11] we have
used asymmetric prior over the concern proportions, where we have used αc

i = (10i) ∗ αc and αm
i = (10i) ∗ αm,

and values of αc, αm being 0.001. [11] have nice discussions on parameters of topic models, which is planned to
be explored for CSTM in future.

Pre-processing: We consider only the textual part of the source code, any syntactical elements have been
removed. We have not used any linguistic tools like stemmer or parts-of-speech tagger, but only removed a set
of standard English stop words3 excluding few Java specific words like get, set etc. We have also removed Java
key-words4. The full list of stop words have been listed in the Appendix. Tokens like StringCopy have been split
into two words String and Copy based on the position of a capital face inside a token, and all uses of capital face
have been converted to small face.

7.1 Key evaluation criteria

Our evaluation is designed to assess the selected models according to the following criteria:

1. Concern detection sensitivity: Can the method surface diffused concerns? (Section 7.2).

2. Concern coverage diversity: Does the method surface a diverse set of concerns ? (Section 7.3).

3. Interpretability of concern assignments: Does the method assign concerns to relevant statements with
a meaningful interpretation ? (Section 7.4).

7.2 Concern detection sensitivity

Criterion: Can the method surface diffused concerns?

In these experiments we use a single application, BerkeleyDB for which a set of known concerns are available
from a published manual analysis [15]. Most of these identified concerns have both a modular component (e.g. a
key class or interface) and cross-cutting statements. To expose differences in model sensitivity to diffused concerns
we design the following tests:

7.2.1 Inject a foreign diffused concern

In this test we insert a few (5) statements corresponding to a foreign concern (we used graphics/color related 44
statements from JHotDraw as the foreign concern) at random positions into some randomly chosen BerkeleyDB
source files. The algorithm is described in Figure 7.2.1.

We run our models on this modified source dataset and check whether the foreign concern is detected. We
observe that CSTM is able to detect the concern when the number of altered files is only 10% of total number of
files, whereas LDA fails to detect the concern even when the number of modified files includes all files with more
than 100 lines (which covers around 50% of the total number of files) (Table 4).

3http : //en.wikipedia.org/wiki/Stop words
4http : //en.wikipedia.org/wiki/List of Java keywords

• c = 0

• For each file f in source, if number of statements in f is more than thrf and c < thrc.

– flag = 0

– pick a random number q, if q < thrq skip this file.

– Set target intrusion list It to empty and i = 0.

– For each statement l in source intrusion list Is

∗ Pick a rand number r

∗ If r > thrr

· include the statement in It

· i = i+ 1

∗ End if i > thri

– For each statement fs in f if flag is 0.

∗ Pick a rand number p

∗ If p > thrp, insert It in f after fs, flag = 1

– c = c+ 1

Figure 4: Algorithm to inject foreign concern into source files. The file to be injected by foreign concern is random.
The intruding statements are randomly chosen, even the number of them random. The position to insert the
intruding statements are also random. By controlling thrc (100 in our case) we can limit number of injected files.
We need thrf to be little high (500 in our case) so that the foreign concern does not become a prominent concern.
thrr and thrr allows to randomly choose the intruding statement and position of injection respectively (both are
0.9 in our case), whereas thri limits the maximum number of foreign statements in a file (5 in our case).

7.2.2 Prune modules where a known concern is prominent

In this test, we choose a couple of known BerkeleyDB cross-cutting concerns and remove the main source files
where these concerns are prominent. Now only the diffused cross-cutting statements corresponding to these
concerns remain in source tree. We run our models on this pruned source dataset and check whether these two
concerns are reflected in the concerns found by these models. The two concerns we chose for this experiment are
”Trace” and ”Memory Budget”.

Table 5 lists the most likely words of the relevant concerns found by the models on running these experiments.
LDA on the pruned tree does not find any topics which reflect the test concerns. CSTM is able to detect both
these concerns, despite the weakend and diffused presence.

7.3 Concern coverage diversity

Criterion: Does the method surface a diverse set of concerns?

The previous experiments focused on the sensitivity of the model with respect to surfacing potentially non-
trivial and interesting concerns with a diffused presence in the source. In the next set of experiments we compare
models in terms of diversity of concerns found (a representative summary should cover a broad set of concerns).

7.3.1 Topic diversity measurement

We measure concern topic diversity quantitatively for both LDA-CS and CSTM in terms of the Jenson Shannon
divergence (JSD) [16] of the concern topic-word distributions of the 100 concerns found. We used the generalized
definition of JSD for more than two distributions, which computes the total divergence to the average of these
distributions.

Statements of foreign concern “graphics”
public class HSVColorSpace extends ColorSpace
public static HSVColorSpace getInstance()
instance = new HSVColorSpace();
super(ColorSpace.TYPEHSV, 3);
public class HSVHarmonicColorWheelImageProducer
extends PolarColorWheelImageProducer

Concern CSTM topic LDA topic
Graphics color, space, hsv, instance, harmonic, model, wheel, image NONE

Table 4: Example statements corresponding to foreign concern “graphics” injected into BerkeleyDB (top). The
concern is detected by CSTM, but LDA fails to detect it due to its weak presence (bottom).

Concern CSTM topic LDA topic
Trace param level util cleaner trace NONE
Memory Budget memory delete ret match budget NONE

Table 5: Context sensitivity experiment results: Pruned BerkeleyDB test concern topics found (5 most likely
words of relevant topics are listed)

JSD(β1, β2, . . . , βK) = H(

K
∑

i

πiβi)−

K
∑

i

πiH(βi)

where H(βi) is the Shannon entropy for distribution βi and we choose the weights π1 = π2 = . . . = πK = 1
K
.

As the number of topics specified for both models is the same, a higher value of JSD indicates a more diverse set
of topics. From our results, we observe that CSTM outperforms LDA-CS in all the four applications in terms of
topic diversity (Figure 5).

7.3.2 Coverage of known BerkeleyDB concerns

In order to obtain a qualitative confidence in the ability of the model(s) to surface representative concerns, we
also assess whether topics found by the models cover known concerns in BerkeleyDB. We make this assessment
based on whether words from a known concern(feature) name appear in the top 10 words of one or more topics.
Both LDA-CS and CSTM exhibit a good coverage of these concerns (Figure 6). As most of these known concerns
have a modular component, LDA-CS is able to detect them. We observe that CSTM surfaces all the known
concerns found by LDA-CS plus a few additional concerns, e.g. ChunkedNIO (a diffused concern). Table 6 lists
examples of the concern topics surfaced by CSTM.

Concern name CSTM Concern topic (most probable words)
Evictor evict nodes scan target bytes evictor renewed iter scanned eviction
Transactions txn xid transaction active txns nxa prepare aborts commits commit
Latch latch thread shared owner waiters held access exclusive stats latches
Statistics bin count stats obsolete progress removed notify accumulator names dcl
ChunkedNIO closed nio channel channels libraries communications job chunked log lock
Checksum checksum user pre future adler implementation cksum validator anticipate assume

Table 6: Examples of BerkeleyDB concerns found by CSTM with 10 most likely words

BerkeleyDB Lucene SPECJbb DaCapo bloat
0

0.1

0.2

0.3

0.4

0.5

Applications

JS
 D

iv
er

g
en

ce
 a

m
o

n
g

 c
o

n
ce

rn
s

CSTM
LDA−CS

Figure 5: Jenson Shannon Divergence among concerns detected by CSTM and LDA-CS.

Figure 6: Out of 23 known concerns in BerkeleyDB, CSTM detects 19, and LDA-CS detects 17. All concerns
detected by LDA-CS are detected by CSTM.

7.4 Programmer interpretability (human evaluation) study:

Criterion: Does the method assign concerns to relevant statements with a meaningful interpretation
?
Assessing the quality of the latent concern structure and the accuracy of fine grained assignments surfaced

by these models involves a subjective judgment that requires expertise possessed by experienced programmers.
We conducted a human evaluation study by designing multiple choice questions to quantify “programmer” inter-
pretability of concerns assignments, in terms of metrics for word intrusion and statement topic mapping relevance,
using a suitably modified version of the methodology recommended in [6].

In order to explain the rationale behind our chosen methodology for evaluating this criteria, we next discuss
some of the alternatives we considered from the state-of-the-art in topic model evaluation.

7.4.1 Evaluating Topic Models: Choice of Methodology

Devising a suitable evaluation methodology to assess the outcome of topic modeling is non-trivial. The latent
variables represent distributions over words – they are called “topics” only to reflect anecdotal experience that
words co-occuring in a “topic” with a high probability are semantically connected to a common theme. This
internal representation is difficult to validate directly because of the lack of ground truth to compare against.
Instead, different evaluation criteria have been adopted in topic modeling literature [1, 6, 17, 18, 19], depending
on the intended purpose, such as:

• Measures based on held-out likelihood (or perplexity 5) that quantify how well the model learned from a
corpus predicts the statistical characteristics of unseen documents or unseen parts of partly seen documents
(document completion).

• Secondary measures that evaluate the use of the model for an external task independent of the topic space,
such as information retrieval. For example, one such measure could be the performance of a classifier that
uses the topics as features with topic proportions representing feature vectors of sampled documents. Here,
the latent space inferred by the topic model represents a dimensionality reduction of the feature space of
the document collection.

• Qualitative assessment that illustrates whether topics inferred are semantically meaningful. For example,
many topic modeling papers present samples of topics found by the model – usually the ten most likely
words in each topic are displayed to enable readers to judge the quality for themselves. The semantic content
attributed to topics is important when the output is intended for human understanding, e.g. consider the
automatic categorization, summarization and annotation of a large corpus of articles by their themes.

• Measures based on human evaluation that quantify the interpretability of the internal representation of the
model, i.e. the extent to which both the topics themselves and the document-wise topic assignments are
semantically meaningful. For example, Chang et al introduced the use of word intrusion and topic intrusion
tests [6] as a human evaluation methodology – a practical approach that goes beyond a purely qualitative
assessment to obtain a quantitative comparison of the interpretability of different models.

For the work described in this chapter, we use the fourth approach above. We employ a variation of the
methodology 6 proposed by Chang et al [6] for assessing model interpretability. Interpretability of the latent
structure of topics learnt is important when topic models are employed for an exploratory purpose as in our
intended application – performance understanding of software concerns. Although objective evaluation measures
based on held-out likelihood provide the most easily generalizable techniques to assess topic models, it has been
observed that models that perform better on these measures may result in less interpretable topics [6]. There
has been some effort to identify alternate objective metrics that could be used as a better proxy for judging topic
interpretability e.g. point-wise mutual information [18] or other indicators of semantic coherence [20] of words in
a topic. When this works well, it could save the need for a human evaluation. However, in our experimental trials
we had mixed success in using or devising semantic coherence metrics as a consistent predictor of interpretability
software code topics, especially across topics identified by different models and over different document collections.

7.4.2 Word intrusion and Topic intrusion measures

Chang et al. [6] describe two types of human evaluation tests which can be used to measure interpretability of
the latent space discovered by a topic model.

The word intrusion test measures the conceptual coherence of the inferred topics according to human inter-
pretation. The experiment involves inserting an intruder word at a random position in the list of top five words
of a topic and testing whether participants are able to detect the odd word out (i.e. whether subjects agree with
the model on the intruder word). The intruder word is selected so that it has a low probability in the topic being

5the perplexity of a held-out test set (exp{−
∑M

d=1

∑Nd
n=1

log(p(wd,n))
∑

M
d=1

Nd
}) is monotonically decreasing in the likelihood of the test

data; a lower perplexity score indicates better generalization performance. [1]
6we describe the exact methodology in more detail in our evaluation section

evaluated, but has a high probability in some other topic (so that it is not ruled out purely because it is a rare
word in the corpus).

The topic intrusion test measures whether the topics assigned to a document by the model agree with human
judgement. The experiment involves inserting an irrelevant intruder topic at a random position in the list of the
three highest probability topics assigned a document and testing whether participants are able to detect the least
relevant topic from the list when shown snippets from the document. Each topic in this list is shown as a set of
the most likely words corresponding to that topic. The intruder topic is selected randomly from the other topics
in the model which have a low probability in the document.

7.4.3 Adapted methodology

We make the following main adaptations to the methodology to make it suitable for assessing statement level
concern assignments:

• We use statement topic mapping relevance instead of topic intrusion for assessing concern assignments.
Unlike a text document, a code statement is unlikely to be assigned to more than one or two topics. Hence,
asking respondents to choose the most relevant topic is more appropriate than detecting the least relevant
topic. The percentage of responses that agree with the model provides a measure of statement topic mapping
relevance.

• Instead of judging the concern assignment of a statement in isolation, we provide a snippet of about 5
code statements that are assigned to the same concern (preferably from the same file, but potentially
non-contiguous lines) so that the participant has some context.

• We add optional fields in the questionnaire for users to fill in a label or name to topic word groups and
statement groups. Unlike natural language text, topics for concerns can include terse or obscure words
and program or domain specific terms that are difficult to interpret without application knowledge. Hence
detecting intruder words can be a problem even for experienced programmers. In such cases, the labels of
a topic or its matching statement group acts as a secondary indication of the topic’s interpretability. When
the labels assigned by different programmers are consistent we can conclude that the topic is interpretable
even when an intruder word cannot be detected.

We illustrate a few sample questions from the study in the Appendix.

7.4.4 Study results

35 programmers participated in our study, including experienced Java programmers from multiple software devel-
opment organizations as well as 12 computer science research students with a strong programming background.
The questions were divided into questionnaires containing a set of simple tasks for determining word intrusion
and statement topic mapping relevance. Different questionnaires were created covering samples of topics surfaced
across the four applications on running the two model variations7, LDA-CS and CSTM. The question sets were
generated using automated scripts applied to the model outputs.

CSTM LDA-CS
No. of responses 171 85
No. of responses matching model 124 58
% matching responses 72.5% 68.2%

Table 7: Interpretability of statement level concern assignments (most relevant topic)

A total of 540 individual task responses were collected (a single programmer had the option of answering one
or two orthogonal questionnaires, a total of 20 questions at the most), 345 responses for CSTM and 195 responses
for LDA-CS. We circulated a larger number of copies of the questionnaires created based on CSTM output to
focus more attention on evaluating the newer model.

7to contain the scale of expert effort required, we limit the number of concern topics sampled for evaluation to 40 per model, i.e.
10 from each application

CSTM LDA-CS
No. of responses 174 110
No. of detections of intruding word 71 33
% agreement with model on intruding word 40.8% 30%

Topic interpretability (% responses that 72.8% 63%
indicate concern topics to be interpretable)

Table 8: Concern topic interpretability results: ability to detect intrusion words or assign consistent labels to
concern topic words or its relevant statements

CSTM LDA−CS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

in
te

rp
re

ta
b

il
it
y
 o

f
s
ta

te
m

e
n

t

le
v
e

l
c
o

n
c
e

rn
 t
o

p
ic

 a
s
s
ig

n
m

e
n

ts

Models
CSTM LDA−CS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o

n
c
e

rn
 t

o
p

ic
 i
n

te
rp

re
ta

b
il
it
y

Models

Figure 7: Notched boxplots of the interpretability of statement level concern (topic) assignments (left) and concern
(topic) interpretability (right) for CSTM and LDA-CS. These plots illustrate the variation in interpretability across
topics, complementing the results in Tables 7 and 8 which showed the averages aggregated over all responses.
The interpretability value (Y-axis) computed for each topic represents the fraction of subjects whose responses
indicate that they perceive that topic to be interpretable.

Table 7 and Table 8 summarize the consolidated results. We observe that statement level concern assignments
are interpretable to a similar extent for both LDA-CS and CSTM, with about 70% responses that match the
model. The word intrusion score, i.e. percentage agreement with the model in word intrusion detection, is
comparatively low for the same topics even though we find that in many cases programmers were able to assign
labels to the topic words or to the corresponding statement sets. To compute concern topic interpretability, we
use the labeling consistency score (percentage of consistent labels) for a concern topic when the topic has a word
intrusion score lower than 60% and at least 50% of its labels are consistent. Otherwise we rely on the topic’s
word intrusion score. We observe that LDA-CS and CSTM exhibit 60-70% topic interpretability for the sampled
concern topics used in the study.

Researchers have previously pointed out that not all the topics inferred for a given document collection are
interpretable [20]. Rather topic models produce a mix of topics, some of which are coherent and others less so –
the higher the number of topics specified8 for a given collection, the wider the mix. The notched boxplots in Fig 7
complement Tables 7 and 8, by providing a perspective of how the interpretability results vary across the sampled
topics for LDA-CS and CSTM. The overlap between the notches indicates that differences in the medians may
not be statistically significant. We also notice a lower variation in the CSTM results compared to LDA-CS for
the sampled topics.

8increasing the number of topics increases the resolution of the model to help unearth specialized topics

Criteria Evaluation question LDA-CS CSTM

Concern detection Can the method surface diffused No Yes
sensitivity (Table 4, 5) concerns?

Concern coverage Does the method surface a Good, but only for Better than
diversity (Figure 5, 6) diverse set of concerns? prominent concerns LDA-CS

Interpretability of Does the method assign concerns About 60-70% As good as
concern assignments to relevant statements with a of the time LDA-CS
(Table 7, 8, Fig 7) meaningful interpretation?

Table 9: Evaluation summary

7.5 Summary

Table 9 summarizes our evaluation findings along the dimensions of concern detection sensitivity, concern diversity
and interpretability of statement level concern assignments. CSTM exhibits better concern detection sensitivity
and diversity and both LDA-CS and CSTM show 60-70% agreement with programmer interpretation in their
statement level concern assignments.

8 Discussion

LDA CSTM

if (PreviousMaxWarehouses == 0) if (PreviousMaxWarehouses == 0)
MaxWarehouses = numberofwarehouses; MaxWarehouses = numberofwarehouses;

else else
++MaxWarehouses; ++MaxWarehouses;

String msg = Loading Warehouse MaxWarehouses String msg = Loading Warehouse MaxWarehouses
System.out.println(msg); System.out.println(msg);
JBButil.getLog().info(msg); JBButil.getLog().info(msg);
// Item Table must be loaded first since warehouses //Item Table must be loaded first since warehouses
if (PreviousMaxWarehouses == 0) { if (PreviousMaxWarehouses == 0) {

loadItemTable(); loadItemTable();

Table 10: Lines from SPECjbb2005/spec/jbb/Company.java, colored based on concerns

A major challenge in statistical modeling is that there is no control over the concerns being detected. If we
merely increase the number of topics, the same concerns can repeat multiple times, whereas many important con-
cerns remain undetected. We have focused on this issue by introducing external control and boosting divergence
among concerns to be detected. This clearly shows an improvement over state-of-the-art statistical models in
detecting statement level concerns (Table 10).

Analysis time and scalability CSTM is a more complex model than LDA, and hence requires an increased
analysis time for large applications. However, CSTM can be made scalable using online mechanisms [21].

Semantic Coherence Although our model can find meaningful concerns, it is well-known [20] that not all
topics found by a statistical model may be meaningful or coherent. This can be addressed to an extent by
filtering out topics which exhibit a relatively low semantic coherence [20].

Future work This paper barely scratches the surface in terms of potential applications combining information
on latent concerns with program properties. For example, we have experimented with using the model to help
highlight concerns responsible for high object churn, a common form of runtime bloat in Java applications.
Concerns and their resource usage proportions could be included as features in models for estimating performance
/ power consumption and for mining resource intensive concern usage patterns.

9 Related Work

Statistical topic models: Latent Dirichlet Allocation (LDA) [1] is a well known topic model which has been
successfully applied in various fields. [7, 8] introduced the use of LDA for analysing and mining software code
to discover and model program concerns as latent topics without any apriori knowledge or expert input. Several
variations of these techniques [22], [23] and delta-LDA [24] have been used for addressing software maintenance
tasks such as estimating semantic coupling metrics, statistical debugging and software evolution, besides program
comprehension and reverse engineering problems. To the best of our knowledge, we are the first to explore the
possibility of using such models for performing automated summarization of runtime resource usage or other
program properties in terms of latent concerns.

There has been some recent work on improving LDA to handle sparseness of short documents, by aggregating
short documents into a larger text [25, 26] or incorporating large scale external data [27]. [28] proposed a model
for sentence based summarization. However, none of these address detection of diffused concerns.

Other concern analysis techniques: There is a large body of existing literature on concern identification
and location besides topic models. A variety of techniques ranging from formal concept analysis, exploiting
program topology [3], information retrieval, graph mining, program slicing [29, 30] and dynamic analysis [31]
have been employed in this context. Solutions that combine multiple approaches [32, 33, 34] and exploit multiple
sources of information have also been used to improve the quality of results. However, unlike statistical topic
models, most of these techniques assume that some information about the desired concern is provided to begin
with, such as feature names, structural attributes, search patterns, bug reports, testcases or execution traces.
Hence we find them less suitable for purposes of unsupervised automated performance summarization. Also, a
statement may contribute to multiple concerns, in which case we need to attribute properties such as statement
execution cost proportionately to these concerns. A statistical topic model provides a natural probabilistic
framework to infer these proportions in terms of the probabilities assigned to different concern topics.

10 Conclusions

The ability to automatically discover representative latent concerns at the level of individual code statements
can enable a new class of automated analyses. We have found that LDA and even specialized models such
as MG-LDA, which have been applied successfully in other domains, fail to detect rare topics that occur only
at a statement level in few files without a prominent presence in any module. Based on insights gained from
these experiences, we presented a new statistical model variation that addresses these challenges along with a
systematic evaluation methodology which confirms the effectiveness of our model and an application of the model
in automated summarization of bytecode execution profiles. We observe that diffused concerns along with rare
concerns can indeed account for a significant differences in resource usage under different execution scenarios.
Our work is an important step towards the invention of sophisticated analysis tools (e.g for estimating software
bloat) that combine information about underlying intent (as represented by latent concerns) with dynamic or
static properties of programs.

References

[1] D. M. Blei, A.Y. Ng, and M.I. Jordan. Latent dirichlet allocation. pages 993–1022. Journal of Machine
Learning Research, 2003.

[2] Ivan Titov and Ryan McDonald. Modeling online reviews with multi-grain topic models. WWW, 2008.

[3] M. P. Robillard. Topology analysis of software dependencies. Number 4. TOSEM, Aug. 2008.

[4] Suparna Bhattacharya, Karthick Rajamani, K Gopinath, and Manish Gupta. Software bloat and wasted
joules: Is modularity a hurdle to green software? IEEE Computer, September 2011.

[5] Marius Marin, Arie Van Deursen, and Leon Moonen. Identifying crosscutting concerns using fan-in analysis.
TOSEM, 17, December 2007.

[6] Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David M. Blei. Reading tea leaves:
How humans interpret topic models. In NIPS, 2009.

[7] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre Baldi. Mining concepts from code
with probabilistic topic models. ASE, 2007.

[8] Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead, and Sushil K. Bajracharya. A theory of aspects as latent
topics. In OOPSLA, 2008.

[9] Girish Maskeri, Santonu Sarkar, and Kenneth Heafield. Mining business topics in source code using latent
dirichlet allocation. In Proceedings of the 1st India software engineering conference, ISEC ’08, pages 113–120,
New York, NY, USA, 2008. ACM.

[10] Trevor Savage, Bogdan Dit, Malcom Gethers, and Denys Poshyvanyk. Topicxp: Exploring topics in source
code using latent dirichlet allocation. In Proceedings of the 2010 IEEE International Conference on Software
Maintenance, ICSM ’10, pages 1–6, Washington, DC, USA, 2010. IEEE Computer Society.

[11] Hanna Wallach, David Mimno, and Andrew McCallum. Rethinking lda: Why priors matter. In NIPS, 2009.

[12] M. Wainwright and M. I. Jordan. A variational principle for graphical models. In New Directions in Statistical
Signal Processing, chapter 11. MIT Press, 2005.

[13] Walter Binder, Jarle Hulaas, Philippe Moret, and Alex Villaz. Platform independent profiling in a virtual
execution environment. SPE, 2009.

[14] S. M. Blackburn and et. al. The DaCapo benchmarks: Java benchmarking development and analysis. In
OOPSLA, 2006.

[15] Christian Kastner, Sven Apel, and Don Batory. A case study implementing features using aspectj. SPLC,
2007.

[16] J. Lin. Divergence measures based on the shannon entropy. Information Theory, IEEE Transactions on,
37(1):145 –151, jan 1991.

[17] Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation methods for topic
models. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages
1105–1112, New York, NY, USA, 2009. ACM.

[18] David Newman, Youn Noh, Edmund Talley, Sarvnaz Karimi, and Timothy Baldwin. Evaluating topic models
for digital libraries. In Proceedings of the 10th annual joint conference on Digital libraries, JCDL ’10, pages
215–224, New York, NY, USA, 2010. ACM.

[19] StephenW. Thomas. Mining software repositories using topic models. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 1138–1139, New York, NY, USA, 2011. ACM.

[20] David Mimno, Hanna Wallach, Edmund Talley, Miriam Leenders, and Andrew McCallum. Optimizing
semantic coherence in topic models. In EMNLP, 2011.

[21] Matthew Hoffman, David Blei, and Francis Bach. Online learning for latent dirichlet allocation. NIPS, 2010.

[22] Hazeline U. Asuncion, Arthur U. Asuncion, and Richard N. Taylor. Software traceability with topic modeling.
ICSE, 2010.

[23] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. Bug localization using latent dirichlet allocation.
Information and Software Technology, 2010.

[24] D. Andrzejewski, A. Mulhern, B. Liblit, and X Zhu. Statistical debugging using latent topic models. ECML,
2007.

[25] Liangjie Hong and Brian D. Davison. Empirical Study of Topic Modeling in Twitter. SOMA, 2010.

[26] J. Weng, E. P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential twitterers. WSDM,
2010.

[27] X. H. Phan, L. M. Nguyen, and S. Horiguchi. Learning to classify short and sparse text & web with hidden
topics from large-scale data collections. WWW, 2008.

[28] Chang Ying-Lang and Chien Jen-Tzung. Latent Dirichlet learning for document summarization. ICASSP,
2009.

[29] M. Harman, N. Gold, R. Hierons, and D. Binkley. Code extraction algorithms which unify slicing and concept
assignment. In WCRE, 2002.

[30] D. Binkley, G. Gold, M. Harman, Z. Li, and K. Mahdavi. An empirical study of the relationship between
the concepts expressed in source code and dependence. volume 81. J. Syst. Software, 2008.

[31] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke. A systematic survey of program
comprehension through dynamic analysis. volume 99, pages 684–702. TSE, Apr. 2009.

[32] Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk. Using data fusion and web mining to support feature
location in softwareusing data fusion and web mining to support feature location in software. ICPC, 2010.

[33] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. Sniafl: Towards a static non-interactive approach to feature
location. volume 15. TOSEM, April 2006.

[34] T. Savage, M. Revelle, and D. Poshyvanyk. Flat3: Feature location and textual tracing tool. ICSE, 2010.

A Computing Likelihood

Eq[log p(θ
g|αg)] =

∫

q(θg) log p(θg|αg)dθg

=

∫

q(θg){

Kg

∑

i=1

(αg
i − 1) log θgi + log Γ(

Kg

∑

i=1

α
g
i)−

Kg

∑

i=1

log Γ(αg
i)}dθ

g

= log Γ(
Kg

∑

i=1

α
g
i)−

Kg

∑

i=1

log Γ(αg
i)}+

Kg

∑

i=1

(αg
i − 1){

∫

q(θg) log(θgi)dθ
g}

= log Γ(

Kg

∑

i=1

α
g
i)−

Kg

∑

i=1

log Γ(αg
i) +

Kg

∑

i=1

(αg
i − 1)Eq[log θ

g
i]

= log Γ(

Kg

∑

i=1

α
g
i)−

Kg

∑

i=1

log Γ(αg
i) +

Kg

∑

i=1

(αg
i − 1)(Ψ(γgi)−Ψ(

Kg

∑

j=1

γ
g
j)) (14)

Eq[log p(θ
l|αl)] =

T+S−1
∑

i=1

Eq[log p(θ
l
i|α

l)]

=

T+S−1
∑

i=1

[log Γ(

Kl

∑

j=1

αl
j)−

Kl

∑

k=1

log Γ(αl
k) +

Kl

∑

k=1

(αl
k − 1)(Ψ(γlik)−Ψ(

Kl

∑

j=1

γlij))] (15)

Eq[log p(ψ|λ)] =
∑

s

Eq[log p(ψs|λ)]

=
∑

s

∫

q(ψs) log p(ψs|λ) dψs

=

S
∑

i=1

[

∫

q(ψi) {

T+S−1
∑

k=1

(λk − 1) logψik + log Γ(

T+S−1
∑

j=1

λj)−

T+S−1
∑

k=1

log Γ(λk)} dψi]

=

S
∑

i=1

[log Γ(

T+S−1
∑

j=1

λj)−

T+S−1
∑

k=1

log Γ(λk) +

∫

q(ψi)

T+S−1
∑

k=1

(λk − 1) logψik dψi]

=

S
∑

i=1

[log Γ(

T+S−1
∑

j=1

λj)−

T+S−1
∑

k=1

log Γ(λk) +

T+S−1
∑

k=1

(λk − 1)

∫

q(ψik) logψik dψik]

=

S
∑

i=1

[log Γ(

T+S−1
∑

j=1

λj)−

T+S−1
∑

k=1

log Γ(λk) +

T+S−1
∑

k=1

(λk − 1)(Ψ(ǫik)−Ψ(

T+S−1
∑

j=1

ǫij))] (16)

Eq[log p(v|ψ)] =

N
∑

n=1

Eq[log p(vn|ψn)]

=

N
∑

n=1

T+S−1
∑

i=1

∫

q(vn = i|σn)q(ψni|ǫni) log p(vn = i|ψn)

=
N
∑

n=1

T+S−1
∑

i=1

σniEq[logψni]

=

N
∑

n=1

T+S−1
∑

i=1

σni(Ψ(ǫni)−Ψ(

T+S−1
∑

j=1

ǫnj)) (17)

Eq[log p(π|α
m)] =

T+S−1
∑

i=1

Eq[log p(πi|α
m)]

=

T+S−1
∑

i=1

∫

q(πi|γ
m
i) log p(πi|α

m)dπi

=
T+S−1
∑

i=1

∫

q(πi|γ
m
i)

1
∑

k=0

(αm
k − 1) log πik + log Γ(

1
∑

k=0

αm
k)−

1
∑

k=0

log Γ(αm
k)

=

T+S−1
∑

i=1

log Γ(

1
∑

k=0

αm
k)−

1
∑

k=0

log Γ(αm
k) +

1
∑

k=0

(αm
k − 1)

∫

q(πik|γ
m
i) log πik

=

T+S−1
∑

i=1

[log Γ(

1
∑

k=0

αm
k)−

1
∑

k=0

log Γ(αm
k) +

1
∑

k=0

(αm
k − 1)(Ψ(γmik)−Ψ(

1
∑

j=0

γmij))] (18)

p(πi|γ
m
i) =

Γ(
∑1

j=0 γ
m
ij)

∏1
k=0 Γ(γ

m
ik)

1
∏

k=0

π
γm
ik−1

ik

= exp log
Γ(

∑1
j=0 γ

m
ij)

∏1
k=0 Γ(γ

m
ik)

1
∏

k=0

π
γm
ik−1

ik

= exp[log Γ(

1
∑

j=0

γmij)−

1
∑

k=0

log Γ(γmik) +

1
∑

k=0

(γmik − 1) log πik]

(19)

Natural parameter η = (γmik−1), sufficient statistics T (π) = log πik and the log-normalizer A(γmi) =
∑1

k=0 log Γ(γ
m
ik)−

log Γ(
∑1

j=0 γ
m
ij). Hence, E[log πik] = Ψ(γmik)−Ψ(

∑1
j=0 γ

m
ij).

Eq[log p(δ|π, v)] =

N
∑

n=1

Eq[log p(δn|πvn
)]

=

N
∑

n=1

1
∑

k=0

∑

vn

∫

πvn

q(δn = k|ξn)q(πvn
|γmvn

)q(vn|σn) log πvnk dπvn

=
N
∑

n=1

1
∑

k=0

T+S−1
∑

i=1

ξnkq(vn = i|σn)

∫

q(πi|γ
m
i) log πik dπi

=

N
∑

n=1

1
∑

k=0

T+S−1
∑

i=1

ξnkσni

∫

q(πi|γ
m
i) log πik dπi

=

N
∑

n=1

1
∑

k=0

T+S−1
∑

i=1

ξnkσniEq[log πik]

=

N
∑

n=1

1
∑

k=0

T+S−1
∑

i=1

ξnkσni(Ψ(γmik)−Ψ(

1
∑

j=0

γmij)) (20)

Eq[log p(z|t, v, δ, θ)] =

N
∑

n=1

Eq[log p(zn|θ, vn, δn, tn)]

=

N
∑

n=1

∑

zn

∑

δn

∫

θ

q(zn, vn, δn, tn, θ) log p(zn|θ, vn, δn, tn) dθ

=

N
∑

n=1

∑

zn

∑

vn

∑

δn

∫

θ

q(zn)q(vn)q(δn)q(θ)q(tn) log p(zn|θ, vn, δn, tn) dθ

=

N
∑

n=1

1
∑

h=0

∑

k

∑

vn

∫

θ

q(zn = k)q(vn = j)q(δn = h)q(θ)q(tn) log p(zn = k|θ, vn = j, δn + tn = h) dθ

=

N
∑

n=1

[

Kg

∑

k=1

T+S−1
∑

j=1

∫

θg

q(zgn = k)q(vn = j)q(δn = 0)q(θg)q(tn = 0) log p(zn = k|θg, δn = 0, tn = 0) dθg

+

Kl

∑

k=1

T+S−1
∑

j=1

∫

θl

q(zln = k)q(vn = j)q(δn = 1)q(tn = 0)q(θg) log p(zn = k|θg, δn = 1, tn = 0, vn = j)

+

Kl

∑

k=1

T+S−1
∑

j=1

∫

θl

q(zln = k)q(vn = j)q(δn = 1)q(tn = 1)q(θl) log p(zn = k|θl, δn = 1, tn = 1, vn = j)

+

Kl

∑

k=1

T+S−1
∑

j=1

∫

θl

q(zln = k)q(vn = j)q(δn = 0)q(tn = 1)q(θl) log p(zn = k|θl, δn = 0, tn = 1, vn = j)

=

N
∑

n=1

[

Kg

∑

k=1

∫

θg

φ
g
nkξn0ρn0q(θ

g) log θgk dθg +

Kg

∑

k=1

∫

θg

φ
g
nkξn1ρn0q(θ

g) log θgk dθg]

+
Kl

∑

k=1

T+S−1
∑

j=1

∫

θl

φlnkσnjξn1ρn1q(θ
l) log θljk dθl] +

Kl

∑

k=1

T+S−1
∑

j=1

∫

θl

φlnkσnjξn0ρn1q(θ
l) log θljk dθl]

=
N
∑

n=1

[
Kg

∑

k=1

φ
g
nkξn0ρn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1ρn0(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))]

+
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1ρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))] +
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn0ρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))]

Eq[log p(w|z, δ, β, t)] =

N
∑

n=1

Eq[log p(wn|zn, β, δn, tn)]

=

N
∑

n=1

∑

zn

∑

δn

q(zn, δn, tn) log p(wn|zn, β, δn, tn)

=

N
∑

n=1

∑

δn

∑

zn

q(zn)q(δn)q(tn) log p(wn|zn, β, δn, tn)

=

N
∑

n=1

1
∑

h=0

∑

zn

q(zn = k)q(δn)q(tn) log p(wn|zn = k, β, δn = h)

=

N
∑

n=1

[
∑

z
g
n

q(zgn = k)q(δn = 0)q(tn = 0) log p(wn|z
g
n = k, β, δn + tn = 0)

+
∑

zl
n

q(zln = k)q(δn = 1)q(tn = 0) log p(wn|z
l
n = k, β, δn + tn = 1)]

+
∑

zl
n

q(zln = k)q(δn = 1)q(tn = 1) log p(wn|z
l
n = k, β, δn + tn = 1)]

+
∑

zl
n

q(zln = k)q(δn = 0)q(tn = 1) log p(wn|z
l
n = k, β, δn + tn = 1)]

=

N
∑

n=1

[

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0ρn0 log β

g
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn0 log β
l
kjIwn=j]

+

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn1 log β
l
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn0ρn1 log β
l
kjIwn=j]

(22)

Eq[log p(t)] =

N
∑

n=1

Eq[log p(tn)]

=
N
∑

n=1

1
∑

k=0

q(tn = k) log ζk

Eq[log p(t)] =

N
∑

n=1

1
∑

k=0

ρnk log ζk (23)

Eq[log q(θ
g)] = Eq[

Kg

∑

i=1

(γgi − 1) log θgi + log Γ(
Kg

∑

i=1

γ
g
i)−

Kg

∑

i=1

log Γ(γgi)]

=

Kg

∑

i=1

(γgi − 1)Eq log θ
g
i + log Γ(

Kg

∑

i=1

γ
g
i)−

Kg

∑

i=1

log Γ(γgi)

=

Kg

∑

i=1

(γgi − 1)(Ψ(γgi)−Ψ(

Kg

∑

j=1

γ
g
j)) + log Γ(

Kg

∑

i=1

γ
g
i)−

Kg

∑

i=1

log Γ(γgi) (24)

Eq[log q(θ
l)] =

T+S−1
∑

i=1

Eq[log q(θ
l
i)]

=
T+S−1
∑

i=1

[
Kl

∑

k=1

(γlik − 1)(Ψ(γlik)−Ψ(
Kl

∑

j=1

γlij)) + log Γ(
Kl

∑

j=1

γlij)−
Kl

∑

k=1

log Γ(γlik)] (25)

Eq[log q(π)] =

T+S−1
∑

i=1

Eq[log q(πi)]

=

T+S−1
∑

i=1

[

1
∑

k=0

(γmik − 1)(Ψ(γmik)−Ψ(

1
∑

j=0

γmij)) + log Γ(

1
∑

k=0

γmik)−

1
∑

j=0

log Γ(γmij)] (26)

Eq[log q(ψ)] =

S
∑

i=1

Eq[log q(ψi)]

=

S
∑

i=1

[

T+S−1
∑

k=1

(ǫik − 1)(Ψ(ǫik)−Ψ(

T+S−1
∑

j=1

ǫij)) + log Γ(

T+S−1
∑

j=1

ǫij)−

T+S−1
∑

k=1

log Γ(ǫik)] (27)

Eq[log q(z|δ = g)] =
N
∑

n=1

Eq[log q(zn|δn = g)]

=
N
∑

n=1

q(zn) log q(zn|δ = g)

=
N
∑

n=1

Kg

∑

i=1

q(zn = i) log q(zn = i|δn = g)

=

N
∑

n=1

Kg

∑

i=1

φ
g
ni log φ

g
ni (28)

Eq[log q(z|δ = l)] =

N
∑

n=1

Kl

∑

i=1

φlni log φ
l
ni (29)

Eq[log q(δ|ξ)] =

N
∑

n=1

Eq[log q(δn|ξn)]

=

N
∑

n=1

ξn log ξn + (1− ξn) log(1− ξn) (30)

Eq[log q(v|σ)] =
N
∑

n=1

Eq[log q(vn|σn)]

=
N
∑

n=1

T+S−1
∑

i=1

q(vn = i|σn) log q(vn = i|σn)

=

N
∑

n=1

T+S−1
∑

i=1

σni log σni (31)

Eq[log q(t)] =

N
∑

n=1

Eq[log q(tn)]

Eq[log q(t)] =

N
∑

n=1

1
∑

k=0

ρnk log ρnk

(32)

B Computing EM algorithm

Computing φl

Lφl =

N
∑

n=1

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh)) +

N
∑

n=1

Kl

∑

k=1

V
∑

g=1

φlnkξn1 log β
l
kgIwn=g −

N
∑

n=1

Kl

∑

k=1

φlnk log φ
l
nk

max
φl
nk

L s.t.

Kl

∑

k=1

φlnk = 1

Q =
N
∑

n=1

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh)) +
N
∑

n=1

Kl

∑

k=1

V
∑

g=1

φlnkξn1 log β
l
kgIwn=g −

N
∑

n=1

Kl

∑

k=1

φlnk log φ
l
nk − ρ(

Kl

∑

k=1

∂Q

∂φlnk
=

T+S−1
∑

j=1

σnjξn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh)) + ξn1 log β
l
kgIwn=g − 1− log φlnk − ρ = 0

φlnk ∝ (βl ξn1

kg Iwn=g) exp(
T+S−1
∑

j=1

σnjξn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))

Computing φg

Lφg =

N
∑

n=1

Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

N
∑

n=1

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j −

N
∑

n=1

Kg

∑

k=1

φ
g
nk log φ

g
nk (35)

max
φ
g

nk

L s.t.

Kg

∑

k=1

φ
g
nk = 1

Q =

N
∑

n=1

Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

N
∑

n=1

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j −

N
∑

n=1

Kg

∑

k=1

φ
g
nk log φ

g
nk − ρ(

Kg

∑

k=1

φ
g
nk − 1)

∂Q

∂φ
g
nk

= ξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) + ξn0 log β

g
kjIwn=j − 1− log φgnk − ρ = 0

φ
g
nk ∝ β

g ξn0

kj exp(ξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j))) (36)

(37)

Computing ξ

Lξ0 =

N
∑

n=1

[

Kg

∑

k=1

φ
g
nkξn0ρn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn0ρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

+

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0ρn0 log β

g
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn0ρn1 log β
l
kjIwn=j − ξn0 log ξn0]

∂L

∂ξn0
=

Kg

∑

k=1

φ
g
nkρn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

+

Kg

∑

k=1

V
∑

j=1

φ
g
nkρn0 log β

g
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkρn1 log β
l
kjIwn=j − 1− log ξn0

ξn0 ∝ exp(

Kg

∑

k=1

φ
g
nkρn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

+

Kg

∑

k=1

V
∑

j=1

φ
g
nkρn0 log β

g
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkρn1 log β
l
kjIwn=j) (38)

Lξ1 =
N
∑

n=1

[
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1ρn0(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))

+
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1ρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh)) +
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn0ρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))

+
Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn0 log β
l
kjIwn=j

+
Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn1 log β
l
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn0ρn1 log β
l
kjIwn=j − ξn1 log ξn1]

(39)

∂L

∂ξn1
=

N
∑

n=1

[
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn0(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))

+
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh)) +
Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn0ρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh))

+
Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn0 log β
l
kjIwn=j

+

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn1 log β
l
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn0ρn1 log β
l
kjIwn=j − 1− log ξn1]

ξn1 ∝ exp(

N
∑

n=1

[

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn0(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

+

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh)) +

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn0ρn1(Ψ(γljk)−Ψ(

Kl

∑

h=1

γljh))

+

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn0 log β
l
kjIwn=j

+

Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn1 log β
l
kjIwn=j +

Kl

∑

k=1

V
∑

j=1

φlnkξn0ρn1 log β
l
kjIwn=j]) (40)

Computing σ

Lσ =

N
∑

n=1

1
∑

h=0

T+S−1
∑

i=1

ξnhσni(Ψ(γmih)−Ψ(

1
∑

j=0

γmij)) +

N
∑

n=1

Kl

∑

k=1

T+S−1
∑

i=1

φlnkσniξn1(Ψ(γlik)−Ψ(

Kl

∑

h=1

γlih))

+
N
∑

n=1

T+S−1
∑

i=1

σni(Ψ(ǫni)−Ψ(
T+S−1
∑

j=1

ǫnj))−
N
∑

n=1

T+S−1
∑

i=1

σni log σni (41)

max
σni

L
T+S−1
∑

i=1

σni = 1

Q = Lσ + ρ(

T+S−1
∑

i=1

σni − 1)

∂Q

∂σni
=

1
∑

h=0

ξnh(Ψ(γmih)−Ψ(

1
∑

j=0

γmij)) +

Kl

∑

k=1

φlnkξn1(Ψ(γlik)−Ψ(

Kl

∑

h=1

γlih)) + Ψ(ǫni)−Ψ(

T+S−1
∑

j=1

ǫnj)− 1− log σni − ρ = 0

σni ∝ exp(
1

∑

h=0

ξnh(Ψ(γmih)−Ψ(
1

∑

j=0

γmij)) +
Kl

∑

k=1

φlnkξn1(Ψ(γlik)−Ψ(
Kl

∑

h=1

γlih)) + Ψ(ǫni)−Ψ(
T+S−1
∑

j=1

ǫnj)) (42)

Computing ǫ

Lǫ =

S
∑

i=1

[log Γ(

T+S−1
∑

j=1

λj)−

T+S−1
∑

k=1

log Γ(λk) +

T+S−1
∑

k=1

(λk − 1)(Ψ(ǫik)−Ψ(

T+S−1
∑

j=1

ǫij))]

+
N
∑

n=1

T+S−1
∑

k=1

σnk(Ψ(ǫnk)−Ψ(
T+S−1
∑

j=1

ǫnj))

−
S
∑

i=1

[
T+S−1
∑

k=1

(ǫik − 1)(Ψ(ǫik)−Ψ(
T+S−1
∑

j=1

ǫij)) + log Γ(
T+S−1
∑

j=1

ǫij)−
T+S−1
∑

k=1

log Γ(ǫik)] (43)

∂L

∂ǫik
= (λk − 1)Ψ′(ǫik) +

N
∑

n=1

σsnkIsn=iΨ
′(ǫik)− (ǫik − 1)Ψ′(ǫik)−Ψ(ǫik) + Ψ(ǫik) = 0

ǫik = λk +

N
∑

n=1

σsnkIsn=i (44)

Computing γg

Lγg = log Γ(
Kg

∑

i=1

α
g
i)−

Kg

∑

i=1

log Γ(αg
i) +

Kg

∑

i=1

(αg
i − 1)(Ψ(γgi)−Ψ(

Kg

∑

j=1

γ
g
j)) +

N
∑

n=1

Kg

∑

i=1

ξn0φ
g
ni(Ψ(γgi)−Ψ(

Kg

∑

j=1

γ
g
j))

− [

Kg

∑

i=1

(γgi − 1)(Ψ(γgi)−Ψ(

Kg

∑

j=1

γ
g
j)) + log Γ(

Kg

∑

i=1

γ
g
i)−

Kg

∑

i=1

log Γ(γgi)]

∂L

∂γ
g
i

= (αg
i − 1)Ψ′(γgi) +

N
∑

n=1

ξn0φ
g
niΨ

′(γgi)− (γgi − 1)Ψ′(γgi)−Ψ(γgi) + Ψ(γgi)

= (αg
i − 1) +

N
∑

n=1

ξn0φ
g
ni − (γgi − 1) = 0 (45)

γ
g
i = α

g
i +

N
∑

n=1

φ
g
niξn0 (46)

Computing γlik

Lγl =

T+S−1
∑

i=1

[log Γ(

Kl

∑

j=1

αl
j)−

Kl

∑

k=1

log Γ(αl
k) +

Kl

∑

k=1

(αl
k − 1)(Ψ(γlik)−Ψ(

Kl

∑

j=1

γlij))]

+

N
∑

n=1

Kl

∑

k=1

T+S−1
∑

i=1

φlnkσniξn1(Ψ(γlik)−Ψ(

Kl

∑

h=1

γlih))

−

T+S−1
∑

i=1

[

Kl

∑

k=1

(γlik − 1)(Ψ(γlik)−Ψ(

Kl

∑

j=1

γlij)) + log Γ(

Kl

∑

j=1

γlij)−

Kl

∑

k=1

log Γ(γlik)]

∂L

∂γlik
= (αl

k − 1)Ψ′(γlik) +

N
∑

n=1

φlnkσniξn1Ψ
′(γlvnk

)− (γlik − 1)Ψ′(γlik)−Ψ(γlik) + Ψ(γlik)

= (αl
k − 1) +

N
∑

n=1

σniξn1φ
l
nk − (γlik − 1) = 0 (47)

γlik = αl
k +

N
∑

n=1

φlnkσniξn1 (48)

Computing γm

Lγm =

T+S−1
∑

i=1

[log Γ(

1
∑

k=0

αm
k)−

1
∑

k=0

log Γ(αm
k) +

1
∑

k=0

(αm
k − 1)(Ψ(γmik)−Ψ(

Kl

∑

j=1

γmij))]

+

N
∑

n=1

1
∑

k=0

T+S−1
∑

i=1

ξnkσni(Ψ(γmik)−Ψ(

1
∑

j=0

γmij))

−
T+S−1
∑

i=1

[
1

∑

k=0

(γmik − 1)(Ψ(γmik)−Ψ(
1

∑

j=0

γmij)) + log Γ(
1

∑

k=0

γmik)−
1

∑

j=0

log Γ(γmij)] (49)

∂L

∂γmik
= (αm

k − 1)Ψ′(γmik) +
N
∑

n=1

ξnkΨ
′(γmik)σni − (γmik − 1)Ψ′(γmik)−Ψ(γmik) + Ψ(γmik) = 0

γmik = αm
k +

N
∑

n=1

ξnkσni (50)

Computing ρ

Lρn0
=

N
∑

n=1

1
∑

k=0

ρnk log ζk +

N
∑

n=1

[

Kg

∑

k=1

φ
g
nkξn0ρn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0ρn0 log β

g
kjIwn=j

−

N
∑

n=1

1
∑

k=0

ρnk log ρnk

∂L

∂ρn0
= log ζ0 +

Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j

−1− log ρn0

ρn0 ∝ exp(log ζ0 +
Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j) (51)

Lρn1
=

N
∑

n=1

1
∑

k=0

ρnk log ζk +
N
∑

n=1

[
Kg

∑

k=1

φ
g
nkξn0ρn1(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0ρn1 log β

g
kjIwn=j

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1ρn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh)) +
Kl

∑

k=1

V
∑

j=1

φlnkξn1ρn1 log β
l
kjIwn=j]

∂L

∂ρn1
= log ζ1 +

Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh)) +
Kl

∑

k=1

V
∑

j=1

φlnkξn1 log β
l
kjIwn=j − 1− log ρn1

ρn1 ∝ exp(log ζ1 +
Kg

∑

k=1

φ
g
nkξn0(Ψ(γgk)−Ψ(

Kg

∑

j=1

γ
g
j)) +

Kg

∑

k=1

V
∑

j=1

φ
g
nkξn0 log β

g
kjIwn=j

Kl

∑

k=1

T+S−1
∑

j=1

φlnkσnjξn1(Ψ(γljk)−Ψ(
Kl

∑

h=1

γljh)) +
Kl

∑

k=1

V
∑

j=1

φlnkξn1 log β
l
kjIwn=j) (52)

B.1 M step

Computing αg

Lαg =

M
∑

d=1

log Γ(

Kg

∑

j=1

α
g
j)−

Kg

∑

i=1

log Γ(αg
i) +

Kg

∑

i=1

(αg
i − 1)(Ψ(γgdi)−Ψ(

Kg

∑

j=1

γ
g
dj)) (53)

∂L

∂α
g
i

= M [Ψ(

Kg

∑

j=1

α
g
j)−Ψ(αg

i)] +

M
∑

d=1

(Ψ(γgdi)−Ψ(

Kg

∑

j=1

γ
g
dj)) (54)

Computing αl

Lαl =
M
∑

d=1

T+S−1
∑

i=1

[log Γ(
Kl

∑

j=1

αl
j)−

Kl

∑

k=1

log Γ(αl
k) +

Kl

∑

k=1

(αl
k − 1)(Ψ(γldik)−Ψ(

Kl

∑

j=1

γldij))] (55)

∂L

∂αl
k

= M(T + S − 1)(Ψ(
Kl

∑

j=1

αl
j)−Ψ(αl

k)) +
M
∑

d=1

T+S−1
∑

i=1

(Ψ(γldik)−Ψ(
Kl

∑

j=1

γldij)) (56)

Computing αm

Lαm =

M
∑

d=1

T+S−1
∑

i=1

[log Γ(

1
∑

j=0

αm
j)−

1
∑

k=0

log Γ(αm
k) +

1
∑

k=0

(αm
k − 1)(Ψ(γmdik)−Ψ(

1
∑

j=0

γmdij))] (57)

∂L

∂αm
k

= M(T + S − 1)(Ψ(

1
∑

j=0

αm
j)−Ψ(αm

k)) +

M
∑

d=1

T+S−1
∑

i=1

(Ψ(γmdik)−Ψ(

1
∑

j=0

γmdij)) (58)

Computing λ

Lλ =

M
∑

d=1

S
∑

i=1

[log Γ(

T+S−1
∑

j=1

λj)−

T+S−1
∑

k=1

log Γ(λk) +

T+S−1
∑

k=1

(λk − 1)(Ψ(ǫdik)−Ψ(

T+S−1
∑

j=1

ǫdij))] (59)

∂L

∂λk
= MS(Ψ(

T+S−1
∑

j=1

λj)−Ψ(λk)) +

M
∑

d=1

S
∑

i=1

(Ψ(ǫdik)−Ψ(

T+S−1
∑

j=1

ǫdij)) (60)

Computing βg

Lβg =

M
∑

d=1

N
∑

n=1

Kg

∑

k=1

V
∑

j=1

φ
g
dnkξdn0ρdn0 log β

g
kjIwdn=j (61)

max
β
g

ij

L s.t.

V
∑

j=1

β
g
ij = 1

β
g
ij ∝

M
∑

d=1

N
∑

n=1

φ
g
dniξdn0ρdn0w

j
dn (62)

Computing βl

Lβl =

M
∑

d=1

N
∑

n=1

Kl

∑

k=1

V
∑

j=1

φldnkξdn1ρdn0 log β
l
kjIwdn=j]

+

Kl

∑

k=1

V
∑

j=1

φldnkξdn1ρdn1 log β
l
kjIwdn=j +

Kl

∑

k=1

V
∑

j=1

φldnkξdn0ρdn1 log β
l
kjIwdn=j]

βl
ij ∝

M
∑

d=1

N
∑

n=1

φldni(ξdn1ρdn0 + ξdn1ρdn1 + ξdn0ρdn1)w
j
dn (63)

C Sample Questions

There are 2 sections A and B. Please answer both sections.

This will be evaluated automatically using a script, kindly write your answer

after the ":" symbol only

SECTION A: Find the odd one out.

Each word set in the questions below contains terms or words observed in code

statements (or comments) related to a particular purpose.

There is one word that does not belong to the set. Can you guess which one

it is ? Can you guess the purpose or assign a name to the set ?

** Hint:

The words in a set are typically sorted in order of relevance

to the purpose, except for the odd word that is introduced at a random

position index.

==

Instruction: Pick the index of the odd word, and give a name to the set.

==

Words set 1

1. stats

2. accumulator

3. walker

4. tree

5. acc

6. parse

ANSWER [give the index]: 6

LABEL [give a name to the set]: stats

Words set 2

1. cleanup

2. time

3. millis

4. now

5. completed

6. match

ANSWER [give the index]: 1

LABEL [give a name to the set]: time

==

SECTION B: Match the statement set provided with the most relevant word set

and the least relevant word set from the 4 choices given

Each statement set in the questions below contains code statements (or comments)

that reflect similar or related purpose, but sampled from multiple

files in a single application. Can you guess the purpose or assign a name

to the set ?

** Each word set listed in the choices contains terms or words observed in code

statements (or comments) related to a particular purpose (the words are

sorted in order of importance to the purpose)

Can you guess which word set from the choices is the most relevant match for

the statement set ? Can you identify the least relevant match ?

==

Instruction: Pick the index of the most relevant and least relevant choices,

and give a name to the statement set.

==

Statements set 1

* Proxy to Cursor.getCursorImpl()

* Proxy to EnvironmentConfig.setTxnReadCommitted()

* Proxy to EnvironmentConfig.cloneConfig()

* Proxy to EnvironmentMutableConfig.validateParams.

* Proxy to DatabaseConfig.match(DatabaseConfig()

Choices

1. stats accumulator walker tree acc

2. parse error enabled the get

3. pool methods versions large buffers

4. environment config txn env properties

Most relevant [give the index]: 4

Least relevant [give the index]: 1

LABEL [give a name to the set]: proxy config

Statements set 2

exactSearch, lockType, bin.getLsn(index));

if (lockResult.getLockGrant() != LockGrantType.DENIED) {

return lockResult;

* Try a non-blocking lock first, to avoid unlatching. If the default

lockResult = locker.nonBlockingLock

Choices

1. match exact both equal get

2. lock owner waiter type grant

3. time millis now completed cleanup

4. parse error enabled the get

Most relevant [give the index]: 2

Least relevant [give the index]: 3

LABEL [give a name to the set]: search lock

D Stop-Words List

a a’s able about above according accordingly across actually after afterwards again against ain’t all allow allows
almost alone along already also although always am among amongst an and another any anybody anyhow anyone
anything anyway anyways anywhere apart appear appreciate appropriate are aren’t around as aside ask asking
associated at available away awfully b be became because become becomes becoming been before beforehand

behind being believe below beside besides best better between beyond both brief but by c c’mon c’s came can
can’t cannot cant cause causes certain certainly changes clearly co com come comes concerning consequently
consider considering contain containing contains corresponding could couldn’t course currently d definitely de-
scribed despite did didn’t different do does doesn’t doing don’t done down downwards during e each edu eg eight
either else elsewhere enough entirely especially et etc even ever every everybody everyone everything everywhere
ex exactly example except f far few fifth first five followed following follows for former formerly forth four from
further furthermore g getting given gives go goes going gone got gotten greetings h had hadn’t happens hardly has
hasn’t have haven’t having he he’s hello help hence her here here’s hereafter hereby herein hereupon hers herself
hi him himself his hither hopefully how howbeit however i i’d i’ll i’m i’ve ie if ignored immediate in inasmuch
inc indeed indicate indicated indicates inner insofar instead into inward is isn’t it it’d it’ll it’s its itself j just k
keep keeps kept know knows known l last lately later latter latterly least less lest let let’s like liked likely little
look looking looks ltd m mainly many may maybe me mean meanwhile merely might more moreover most mostly
much must my myself n name namely nd near nearly necessary need needs neither never nevertheless new next
nine no nobody non none noone nor normally not nothing novel now nowhere o obviously of off often oh ok okay
old on once one ones only onto or other others otherwise ought our ours ourselves out outside over overall own
p particular particularly per perhaps placed please plus possible presumably probably provides q que quite qv r
rather rd re really reasonably regarding regardless regards relatively respectively right s said same saw say saying
says second secondly see seeing seem seemed seeming seems seen self selves sensible sent serious seriously seven
several shall she should shouldn’t since six so some somebody somehow someone something sometime sometimes
somewhat somewhere soon sorry specified specify specifying still sub such sup sure t t’s take taken tell tends th
than thank thanks thanx that that’s thats the their theirs them themselves then thence there there’s thereafter
thereby therefore therein theres thereupon these they they’d they’ll they’re they’ve think third this thorough
thoroughly those though three through throughout thru thus to together too took toward towards tried tries
truly try trying twice two u un under unfortunately unless unlikely until unto up upon us use used useful uses
using usually uucp v value various very via viz vs w want wants was wasn’t way we we’d we’ll we’re we’ve welcome
well went were weren’t what what’s whatever when whence whenever where where’s whereafter whereas whereby
wherein whereupon wherever whether which while whither who who’s whoever whole whom whose why will will-
ing wish with within without won’t wonder would would wouldn’t x y yes yet you you’d you’ll you’re you’ve
your yours yourself yourselves z zero abstract continue for new switch assert default goto package synchronized
boolean do if private this break double implements protected throw byte else import public throws case enum
instanceof return transient catch extends int short try char final interface static void class finally long strictfp
volatile const float native super while org apache lucene java lang true false null xalan er string code ref excep-
tion error type br element license sax dom param path document attribute xsl object objects function functions
func method ljava anewarray field invokevirtual xpath lorg getfield utils templates invokespecial init handler util
putfield iterator buffer vector runtime javax base elem stylesheet invokeinterface context axis template symbol
checkcast invokestatic source processor extension extensions script constructor invoke debug xsltc append stream
impl getstatic expression factory print file hashtable security ljavax saxdtm axes support namespace xslt stack
result loader prefix system compiler resolver manager size properties current content table text equals create tree
root list array index expr serializer locator parser resource option invalid supported attrib illegal found length
variable start iterators locale version args integer reader bundle listener putstatic suballocated message format
println writer step call token match test walker throwable expanded property pool serialization configuration
internal messages data filter patterns fast left wrapper software

